精英家教网 > 高中数学 > 题目详情
12.若函数f(x)=-4x2+20x-23的定义域由不等式-x2-x+12≥0的解集来确定,求函数f(x)的最大值和最小值.

分析 先通过解不等式-x2-x+12≥0得出函数f(x)的定义域,求出函数f(x)的对称轴,根据二次函数求最值的方法去求f(x)的最值即可.

解答 解:解-x2-x+12≥0得:-4≤x≤3;
函数f(x)的对称轴为x=$\frac{5}{2}$;
∴x=$\frac{5}{2}$时,f(x)取到最大值2;
定义域的左端点-4离对称轴远;
∴x=-4时,f(x)取得最小值-167;
∴f(x)的最大值和最小值分别为:2,-167.

点评 考查解一元二次不等式,函数定义域的概念,掌握二次函数求在闭区间上最值的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点为F(1,0),直线y=x-$\sqrt{7}$与椭圆有且仅有一个交点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线l交椭圆于A,B两点,且$\overrightarrow{FA}•\overrightarrow{FB}$=0,试求l在x轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax+b-lnx表示的曲线在点(2,f(2))处的切线方程x-2y-2ln2=0
(1)求a,b的值;
(2)若f(x)≥kx-2对于x∈(0,+∞)恒成立,求实数k的取值范围;
(3)求证:n∈N*时,n(n+1)≤2$\frac{{e}^{n}-1}{e-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知在平面直角坐标系xOy中曲线的参数方程为$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),则以Ox为极轴建立极坐标系,该曲线的极坐标方程为ρ2-4ρcosθ+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{a}{2}$x2-lnx+x+1,g(x)=aex+$\frac{a}{x}$+ax-2a-1,其中a∈R.
(1)若a=1,求函数g(x)在[1,3]上的最值;
(2)试探究函数f(x)的单调性;
(3)若对任意的x∈(0,+∞),g(x)≥f′(x)恒成立,求正实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设B={x|-2<x<1,x∈Z},写出B的所有子集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解不等式:$\frac{x+2}{{x}^{2}+x+1}$>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(0,-2),当k为何值时,
(1)k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$共线?
(2)k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为120°?
(3)k$\overrightarrow{a}$-$\overrightarrow{b}$的模等于$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知离心率为$\frac{{\sqrt{3}}}{2}$的椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)与直线x=2相交于P,Q两点(点P在x轴上方),且|PQ|=2.点A,B是椭圆上位于直线PQ两侧的两个动点,且∠APQ=∠BPQ.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求四边形APBQ面积的取值范围.

查看答案和解析>>

同步练习册答案