【题目】在平面直角坐标系
中,已知点
,抛物线
的焦点为
,设
为抛物线
上异于顶点的动点,直线
交抛物线
于另一点
,连结
,
,并延长,分别交抛物线
与点
,
.
(1)当
轴时,求直线
与
轴的交点的坐标;
(2)设直线
,
的斜率分别为
,
,试探索
是否为定值?若是,求出此定值;若不是,试说明理由.
【答案】(1)(4,0);(2)是定值,![]()
【解析】
(1)由抛物线方程求出焦点坐标,得到直线MN的方程,代入抛物线方程求出M、N的坐标,由两点式求得直线ME的方程,和抛物线方程联立解得P点坐标,同理求得Q点坐标,则直线PQ的方程可求,直线PQ与x轴的交点坐标可求;
(2)分别设M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4),再设直线MN、MP、NQ的直线方程,分别和抛物线方程联立后由根与系数关系得到y3=2y2,x3=4x2,y4=2y1,x4=4x1.代入斜率公式整理得答案.
(1)抛物线C:y2=4x的焦点F(1,0).
当MN⊥Ox时,直线MN的方程为 x=1.
将x=1代入抛物线方程y2=4x,得y=±2.
不妨设M(1,2),N(﹣1,2),
则直线ME的方程为y=﹣2x+4,
由
,解得x=1或x=4,于是得P(4,﹣4).
同理得Q(4,4),所以直线PQ的方程为x=4.
故直线PQ与x轴的交点坐标(4,0);
(2)设直线MN的方程为x=my+1,
并设M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4).
由
,得y2﹣4my﹣4=0,
于是y1y2=﹣4 ①,从而
②.
设直线MP的方程为x=my+2,
由
,得y2﹣4my﹣8=0,
∴y1y3=﹣8 ③,x1x3=4 ④.
设直线NQ的方程为x=ty+2,
由
,得y2﹣4ty﹣8=0,
于是y2y4=﹣8 ⑤,x2x4=4 ⑥.
由①②③④⑤⑥,得y3=2y2,x3=4x2,y4=2y1,
x4=4x1.
,
即
.
科目:高中数学 来源: 题型:
【题目】已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点P的纵坐标为3,且|PF|=4,过M(m,0)作抛物线C的切线MA(斜率不为0),切点为A.
(1)求抛物线C的方程;
(2)求证:以FA为直径的圆过点M.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数y=f(x)的定义域为R,并且满足f(x+y)=f(x)+f(y),f(
)=1,当x>0时,f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)如果f(x)+f(2+x)<2,求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定正整数
,已知用克数都是正整数的
块砝码和一台天平可以称出质量为
克的所有物品.
(1)求
的最小值
;
(2)当且仅当
取什么值时,上述
块砝码的组成方式是惟一确定的?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
经过点
,离心率为
.
(1)求椭圆
的标准方程;
(2)过坐标原点
作直线
交椭圆
于
、
两点,过点
作
的平行线交椭圆
于
、
两点.
①是否存在常数
,满足
?若存在,求出这个常数;若不存在,请说明理由;
②若
的面积为
,
的面积为
,且
,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com