精英家教网 > 高中数学 > 题目详情
设矩阵M=
1a
b1

(I)若a=2,b=3,求矩阵M的逆矩阵M-1
(Ⅱ)若曲线C:x2+4xy+2y2=1在矩阵M的作用下变换成曲线C′:x2-2y2=1,求a+b的值.
考点:逆变换与逆矩阵
专题:选作题,矩阵和变换
分析:(I)求出M的行列式,即可求矩阵M的逆矩阵M-1
(Ⅱ)确定坐标之间的变换关系,利用若曲线C:x2+4xy+2y2=1在矩阵M的作用下变换成曲线C′:x2-2y2=1,比较系数,求出a,b,即可求a+b的值.
解答: 解:(I)当a=2,b=3时,M的行列式det(M)=-5,
故所求的逆矩阵M-1=
-
1
5
2
5
3
5
-
1
5
.…(3分)
(II)设曲线C上任意一点P(x,y),它在矩阵M所对应的线性变换作用下得到点P'(x',y'),则
1a
b1
x
y
=
x′
y′
,即
x+ay=x′
bx+y=y′

又点P'(x',y')在曲线C'上,所以x'2-2y'2=1,则(x+ay)2-2(bx+y)2=1,
即(1-2b2)x2+(2a-4b)xy+(a2-2)y2=1为曲线C的方程,…(5分)
又已知曲线C的方程为x2+4xy+2y2=1,
比较系数可得
1-2b2=1
2a-4b=4
a2-2=2
,解得b=0,a=2,∴a+b=2.…(7分)
点评:本小题主要考查矩阵与变换等基础知识,考查运算求解能力,考查化归与转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?
(1)甲得4本,乙得3本,丙得2本;
(2)一人得4本,一人得3本,一人得2本;
(3)甲、乙、丙各得3本.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|2x+3|.
(Ⅰ)解不等式f(x)<2;
(Ⅱ)若f(x)+2|x-5|>m对一切实数x均成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

22x+2+3•2x-1=0,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2+ax-alnx(a∈R),当a=2时,求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的四棱锥P-ABCD的底面ABCD是边长为a(a>0)的菱形,∠ABC=60°,点P在底面的射影O在DA的延长线上,且OC过边AB的中点E.
(1)证明:BD⊥平面POB;
(2)若PO=
a
2
,求平面PAC与平面PCO夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆(x+1)2+(y-1)2=18的一条切线经过点A(2,4)及点B(4,-4),求这条切线的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,已知S△ABC=
3
2
BA
BC
,求∠B.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象,则φ=
 

查看答案和解析>>

同步练习册答案