【题目】已知与曲线
相切的直线
,与
轴,
轴交于
两点,
为原点,
,
,(
).
(1)求证::
与
相切的条件是:
.
(2)求线段
中点的轨迹方程;
(3)求三角形
面积的最小值.
【答案】(1)见解析;(2)
;(3)
.
【解析】试题分析:(1)写出直线的截距式方程,化为一般式,化圆的一般式方程为标准式,求出圆心坐标和半径,由圆心到直线的距离等于半径得到曲线C与直线l相切的充要条件;
(2)设出线段AB的中点坐标,由中点坐标公式得到a,b与AB中点坐标的关系,代入(1)中的条件得线段AB中点的轨迹方程.(3)因为a与b都大于2,且三角形AOB为直线三角形,要求面积的最小值即要求ab的最小值,根据(1)中直线l与圆相切的条件(a-2)(b-2)=2解出ab,然后利用基本不等式即可求出ab最小时当且经当a与b相等,求出此时的a与b即可求出面积的最小值.
试题解析:
(1)圆的圆心为
,半径为1.可以看作是
的内切圆。
内切圆的半径
,
即
,
即
,
.
(2)线段AB中点
为![]()
∴
(
)
(3)
,
,
解得
,
,
,
最小面积
.
科目:高中数学 来源: 题型:
【题目】定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界,已知函数
.
(Ⅰ)若
是奇函数,求
的值.
(Ⅱ)当
时,求函数
在
上的值域,判断函数
在
上是否为有界函数,并说明理由.
(Ⅲ)若函数
在
上是以
为上界的函数,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】父亲节小明给爸爸从网上购买了一双运动鞋,就在父亲节的当天,快递公司给小明打电话话说鞋子已经到达快递公司了,马上可以送到小明家,到达时间为晚上6点到7点之间,小明的爸爸晚上5点下班之后需要坐公共汽车回家,到家的时间在晚上5点半到6点半之间。求小明的爸爸到家之后就能收到鞋子的概率(快递员把鞋子送到小明家的时候,会把鞋子放在小明家门口的“丰巢”中)为 __________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD中,
,
,F分别在线段BC和AD上,
,将矩形ABEF沿EF折起
记折起后的矩形为MNEF,且平面
平面ECDF.
![]()
Ⅰ
求证:
平面MFD;
Ⅱ
若
,求证:
;
Ⅲ
求四面体NFEC体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC所在的平面内,点P0、P满足
=
,
,且对于任意实数λ,恒有
,则( )
A.∠ABC=90°
B.∠BAC=90°
C.AC=BC
D.AB=AC
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com