精英家教网 > 高中数学 > 题目详情
3.已知p:“$\frac{x-2}{x+2}$≤0”,q:“x2-2x+1-m2<0(m<0)”,命题“若¬p,则¬q”为假命题,“若¬q,则¬p”为真命题,则实数m的取值范围是(-∞,-3].

分析 分别求出p,q为真时的x的范围,根据p⇒q,而q推不出p,求出m的范围即可.

解答 解:若p:“$\frac{x-2}{x+2}$≤0”为真命题,
则p:-2<x≤2;
若q:“x2-2x+1-m2<0(m<0)”为真命题,
则1+m<x<1-m,
命题“若¬p,则¬q”为假命题,“若¬q,则¬p”为真命题,
即p⇒q,而q推不出p,
∴$\left\{\begin{array}{l}{-2>1+m}\\{2<1-m}\end{array}\right.$,解得:m<-3,
将m=-3代入符合题意,
故答案为:(-∞,-3].

点评 本题考查了充分必要条件,考查集合的包含关系,考查复合命题的判断,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.M={y|y=2x+1},N={y|y=x${\;}^{\frac{2}{5}}$},则M∩N=(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校学生利用元旦节进行社会实践,在[25,55]岁的人群随机抽取n人,进行了一次“是否已养成垃圾分类习惯”的调查,得到如下统计表和各年龄段人数频率分布直方图:
组数分组已养成垃圾分类习惯的人数占本组频率
第一组[25,30)1200.6
第二组[30,35)195p
第三组[35,40)1000.5
第四组[40,45)a0.4
第五组[45,50)300.3
第六祖[50,55]150.3
(Ⅰ)补全频率分布直方图并求n、a、p的值;
(Ⅱ)从[40,50)岁年龄段的“已养成垃圾分类习惯的人”中采用分层抽样法抽取6人参加垃圾分类宣讲活动,其中选取2人作为领队,求选取的2名领队年龄都在[40,45)岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x+a|+|x-2|.
(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;
(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线l⊥平面α,直线m?平面β,下列命题正确的是(  )
A.若α⊥β,则l∥mB.若l⊥m,则α∥βC.若l∥β,则m⊥αD.若α∥β,则l⊥m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C上每一点到点F(2,0)的距离与到直线x=-2的距离相等
(Ⅰ)求曲线C的方程
(Ⅱ)直线过点p(a,0)a>0,且与曲线C有两个焦点A,B,O为坐标原点,求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知表面积为24π的球外接于三棱锥S-ABC,且∠BAC=$\frac{π}{3}$,BC=4,则三棱锥S-ABC的体积最大值为(  )
A.$\frac{8\sqrt{2}}{3}$B.$\frac{16\sqrt{2}}{3}$C.$\frac{16}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.圆Г的圆周上六个点将圆周等分,经过这6个点中任意两点做圆的弦,在所做的这些弦中任意取出两条,则这两条弦有公共点的概率为(  )
A.$\frac{5}{7}$B.$\frac{4}{7}$C.$\frac{1}{3}$D.$\frac{4}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=(-1,3),则|$\overrightarrow{a}$|的值是(  )
A.$\sqrt{10}$B.10C.$\sqrt{5}$D.5

查看答案和解析>>

同步练习册答案