分析 (I)依题意知,动点M到定点F(2,0)的距离等于M到直线x=-2的距离,由抛物线的定义求出曲线C的方程;
(II)设直线l的方程为x=my+a,代入抛物线方程,利用韦达定理,即可得出结论.
解答 解:(Ⅰ)∵曲线C上的每一点到定点F(2,0)的距离与到定直线l:x=-2的距离相等,
∴轨迹为焦点在x轴上,以F(2,0)为焦点的抛物线
标准方程为:y2=8x
(Ⅱ)设直线l的方程为x=my+a,代入抛物线方程,可得:y2-8my-8a=0
设A(x1,y1),B(x2,y2),则y1+y2=8m,y1y2=-8a,
∴△AOB的面积=$\frac{1}{2}$•a•|y1-y2|=$\frac{1}{2}$•aπ$\sqrt{64{m}^{2}+32a}$≥2a$\sqrt{2a}$,
即m=0,△AOB的面积最小值为2a$\sqrt{2a}$.
点评 本题主要考查了轨迹方程,考查直线与圆锥曲线的综合问题,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | $\frac{2π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日期 | 7月15日 | 8月15日 | 9月15日 | 10月15日 | 11月15日 | 12月15日 |
| 摄氏温度x(℃) | 36 | 35 | 30 | 24 | 18 | 8 |
| 饮料杯数y | 27 | 29 | 24 | 18 | 15 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2)∪(2,+∞) | B. | (-2,2) | C. | [-2,2] | D. | (-∞,-2)∪[2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com