精英家教网 > 高中数学 > 题目详情
18.如图,设四棱柱ABCD-A1B1C1D1的底面为菱形,A1C与底面垂直.过点C作平面与四棱柱的侧棱垂直,且分别交A1A于点E,交BB1于点F,交DD1于点G.
(1)证明:面A1CC1⊥面EFCG;
(2)证明:四边形EFCG为菱形.

分析 (1)利用平面与平面垂直的判定定理,即可证明;
(2)证明CE⊥FG,即可证明四边形EFCG为菱形.

解答 证明:(1)∵过点C作平面与四棱柱的侧棱垂直,且分别交A1A于点E,交BB1于点F,交DD1于点G,
∴CC1⊥面EFCG,
∵CC1?面A1CC1
∴面A1CC1⊥面EFCG;
(2)由(1)可知四边形EFCG为平行四边形,
∵四棱柱ABCD-A1B1C1D1的底面为菱形,
∴AC⊥BD.
∵A1C与底面垂直,
∴CE在平面ABCD上的射影为AC,FG在平面ABCD上的射影为BD,
∴CE⊥FG,
∴四边形EFCG为菱形.

点评 本题考查平面与平面垂直的判定定理,考查线面垂直的性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.数列{an}满足:a0=8,an=$\frac{1}{2}$an-12,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,两根杆分别绕着点A和B(AB=2a)在平面内转动,并且转动时两杆保持互相垂直,求杆的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.要做一个容积为250πm3的无盖圆柱体蓄水池,已知池底单位造价为池壁单位造价的两倍,问蓄水池的尺寸应怎样设计才能使总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.M={y|y=2x+1},N={y|y=x${\;}^{\frac{2}{5}}$},则M∩N=(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.观察下列数列当n→∞时有无极限:
(1)1,-1,1,…,(-1)n-1,…;
(2)$\frac{1}{2}$,$\frac{1}{4}$,$\frac{1}{8}$,…,$\frac{1}{{2}^{n}}$,…;
(3)$\frac{1}{2}$,$\frac{2}{3}$,$\frac{3}{4}$,…,$\frac{n}{n+1}$,…;
(4)1,3,5,…,2n-1,…

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足a1=4.an=4-$\frac{4}{{a}_{n-1}}$(n>1,n∈N+)记bn=$\frac{1}{{a}_{n}-2}$.
(1)试判{bn}是否为等差数列?说明理由.
(2)若an=$\frac{{a}_{n-1}}{4{a}_{n-1}+1}$(n>1,n∈N+),能否判断数列{$\frac{1}{{a}_{n}}$}是等差数列?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于函数f(x),若存在x0∈Z,满足|f(x0)|≤$\frac{1}{4}$,则称x0为函数f(x)的一个“近零点”.已知函数f(x)=ax2+bx+c(a>0)有四个不同的“近零点”,则a的最大值为(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C上每一点到点F(2,0)的距离与到直线x=-2的距离相等
(Ⅰ)求曲线C的方程
(Ⅱ)直线过点p(a,0)a>0,且与曲线C有两个焦点A,B,O为坐标原点,求△AOB面积的最小值.

查看答案和解析>>

同步练习册答案