精英家教网 > 高中数学 > 题目详情
16.已知直线x-ay=4在y轴上的截距是2,则a等于(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

分析 直接把点(0,2)代入直线方程,求出a即可.

解答 解:已知直线x-ay=4在y轴上的截距是2,
即直线过(0,2),代入得:-2a=4,
则a=-2,
故选:C.

点评 本题考查了一次函数图象上点的坐标的特点,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.要做一个容积为250πm3的无盖圆柱体蓄水池,已知池底单位造价为池壁单位造价的两倍,问蓄水池的尺寸应怎样设计才能使总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于函数f(x),若存在x0∈Z,满足|f(x0)|≤$\frac{1}{4}$,则称x0为函数f(x)的一个“近零点”.已知函数f(x)=ax2+bx+c(a>0)有四个不同的“近零点”,则a的最大值为(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,曲线C1的参数方程为:$\left\{\begin{array}{l}{x=cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ-6sinθ+8cosθ=0(ρ≥0).
(1)求曲线C1的普通方程和曲线C2的直角坐标方程:
(2)直钱l:$\left\{\begin{array}{l}{x=2+t}\\{y=-\frac{3}{2}+λt}\end{array}\right.$(t为参数)过曲线C1与y轴负半轴的交点,求直线l平行且与曲线C2相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x+a|+|x-2|.
(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;
(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=$\frac{x-4}{m{x}^{2}+4mx+3}$的定义域为R,则实数m的取值范围是(  )
A.(0,$\frac{3}{4}$)B.(0,$\frac{3}{4}$]C.[0,$\frac{3}{4}$]D.[0,$\frac{3}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C上每一点到点F(2,0)的距离与到直线x=-2的距离相等
(Ⅰ)求曲线C的方程
(Ⅱ)直线过点p(a,0)a>0,且与曲线C有两个焦点A,B,O为坐标原点,求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某班全体学生参加一次测试,将所得分数依次分组:[20,40),[40,60),[60,80),[80,100),绘制出如图所示的成绩频率分布直方图,若低于60分的人数是18,则该班的学生人数是(  )
A.50B.54C.60D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知圆锥的母线长为20cm,则当其体积最大时,其侧面积为(  )
A.$\frac{800\sqrt{6}π}{3}$cm2B.$\frac{400\sqrt{6}π}{3}$cm2C.$\frac{100\sqrt{6}π}{3}$cm2D.$\frac{200\sqrt{6}π}{3}$cm2

查看答案和解析>>

同步练习册答案