精英家教网 > 高中数学 > 题目详情
5.某班全体学生参加一次测试,将所得分数依次分组:[20,40),[40,60),[60,80),[80,100),绘制出如图所示的成绩频率分布直方图,若低于60分的人数是18,则该班的学生人数是(  )
A.50B.54C.60D.64

分析 根据频率分布直方图,求出得分低于60分的频率,再求该班的学生人数.

解答 解:由频率分布直方图知,得分低于60分的频率为
(0.005+0.01)×20=0.3,
∵低于60分的人数是18,
∴该班的学生人数是$\frac{18}{0.3}$=60
故选:C.

点评 本题考查了频率分布直方图的应用问题,解题时应根据频率分布直方图求出频率,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.(1)“a+c=2b”是“a,b,c成等比数列”的既不充分也不必要条件;
(2)“$\frac{a}{b}$+$\frac{c}{b}$=2”是“a,b,c成等差数列”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线x-ay=4在y轴上的截距是2,则a等于(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,已知三条边上的高线长分别为$\frac{1}{3}$,$\frac{1}{5}$,$\frac{1}{7}$,则△ABC的最大内角为(  )
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.有一名同学家开了小卖部,他为了研究气温对某种饮料销售的影响,记录了2015年7月至12月每月15号的下午14时的气温和当天卖出的饮料杯数,得到如下资料:
日期7月15日8月15日9月15日10月15日11月15日12月15日
摄氏温度x(℃)36353024188
饮料杯数y27292418155
改同学确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选中的2组数据进行检验.
(1)求选取2组数据恰好是相邻两个月的概率;
(2)若选中的是8月与12月的两组数据,根据剩下的4组数据,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(3)若由线性回归方程得到的估计数据与所选出的检验数据误差不超过3杯,则认为得到的线性回归方程是理想的,请问(2)所得到的线性回归方程是否理想.
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线y=bx+a的斜率和截距的最小二乘估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n})({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|3≤3x≤27},B={x|log2x>1}.
(1)求(∁RB)∪A;
(2)已知集合C={x|1<x<a},若 C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.sin347°cos148°+sin77°cos58°=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中真命题的是(  )
A.若|a|≠|b|,则a≠-bB.y=cos2x的最小正周期为2π
C.若M∩N=M,那么M⊆ND.在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$>0,则B为锐角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.当x=(  )时,复数z=(x2+x-2)+(x2+3x+2)i(x∈R)是纯虚数.
A.1B.1或-2C.-1D.-2

查看答案和解析>>

同步练习册答案