精英家教网 > 高中数学 > 题目详情
10.已知集合A={x|3≤3x≤27},B={x|log2x>1}.
(1)求(∁RB)∪A;
(2)已知集合C={x|1<x<a},若 C⊆A,求实数a的取值范围.

分析 (1)解指数不等式我们可以求出集合A,解对数不等式,我们可以求集合B,再由集合补集的运算规则,求出CRB,进而由并集的运算法则,即可求出(CRB)∪A;
(2)由(1)中集合A,结合集合C={x|1<x<a},我们分C=∅和C≠∅两种情况,分别求出对应的实数a的取值,最后综合讨论结果,即可得到答案.

解答 解:(1)A={x|3≤3x≤27}={x|1≤x≤3}…(1分)
B={x|log2x>1}={x|x>2}…(3分)
(CRB)∪A={x|x≤2}∪{x|1≤x≤3}={x|x≤3}…(6分)
(2)当a≤1时,C=∅,此时C⊆A…(8分)
当a>1时,C⊆A,则1<a≤3…(10分)
综上所述,a的取值范围是(-∞,3]…(12分)

点评 本题考查的知识点是集合交、并、补集的混合运算,集合关系中的参数取值问题,指数不等式的解法,对数不等式的解法,其中解指数不等式和对数不等式求出集合A,B是解答本题的关键,在(2)的解答中易忽略C为空集也满足条件而错解为(1,3],也容易忽略最后要的结果为集合,不能用不等式的形式表达.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=3sin(ωx+φ)对任意实数x都有f($\frac{π}{3}$+x)=f($\frac{π}{3}$-x)恒成立,则f($\frac{π}{3}$)等于(  )
A.0B.3C.-3D.3或-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=$\frac{x-4}{m{x}^{2}+4mx+3}$的定义域为R,则实数m的取值范围是(  )
A.(0,$\frac{3}{4}$)B.(0,$\frac{3}{4}$]C.[0,$\frac{3}{4}$]D.[0,$\frac{3}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等比数列{an}的公比q>1,a1=2,且a1,a2,a3-8成等差数列,数列{anbn}的前n项和为$\frac{(2n-1)•3^n+1}{2}$.
(1)分别求出数列{an}和{bn}的通项公式;
(2)设数列cn=$\frac{2b_n-9}{a_n}$,?n∈N*,cn≤m恒成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某班全体学生参加一次测试,将所得分数依次分组:[20,40),[40,60),[60,80),[80,100),绘制出如图所示的成绩频率分布直方图,若低于60分的人数是18,则该班的学生人数是(  )
A.50B.54C.60D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给出函数f(x)=a2x-1+2(a为常数,且a>0,a≠1),无论a取何值,函数f(x)恒过定点P,则P的坐标是(  )
A.(0,1)B.(1,2)C.(1,3)D.($\frac{1}{2}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知命题p:?x∈[l,2],m≤x2,命题q:?x∈R,x2+mx+l>0
(Ⅰ)写出“¬p命题;
(Ⅱ)若命题p∧q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从装有3个红球和3个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是(  )
A.恰有1个红球与恰有2个红球B.至少有1个黑球与都是黑球
C.至少有1个黑球与至少有1个红球D.至多有1个黑球与都是红球

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow a=(2,m),\overrightarrow b=(-1,m)$,若$(2\overrightarrow a+\overrightarrow b)∥\overrightarrow b$,则$|{\overrightarrow a}|$=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案