精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=|x+a|+|x-2|.
(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;
(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.

分析 (1)通过讨论x的范围,得到关于x的不等式组,求出每个不等式组的解集,再取并集即得所求.
(2)原命题等价于-2-x≤a≤2-x在[1,2]上恒成立,由此求得求a的取值范围.

解答 解:(1)当a=-3时,f(x)≥3 即|x-3|+|x-2|≥3,
即①$\left\{\begin{array}{l}{x≤2}\\{3-x+2-x≥3}\end{array}\right.$,或②$\left\{\begin{array}{l}{2<x<3}\\{3-x+x-2≥3}\end{array}\right.$,或③$\left\{\begin{array}{l}{x≥3}\\{x-3+x-2≥3}\end{array}\right.$;
解①可得x≤1,解②可得x∈∅,解③可得x≥4.
把①、②、③的解集取并集可得不等式的解集为 {x|x≤1或x≥4}.
(2)原命题即f(x)≤|x-4|在[1,2]上恒成立,等价于|x+a|+2-x≤4-x在[1,2]上恒成立,
等价于|x+a|≤2,等价于-2≤x+a≤2,-2-x≤a≤2-x在[1,2]上恒成立.
故当 1≤x≤2时,-2-x的最大值为-2-1=-3,2-x的最小值为0,
故a的取值范围为[-3,0].

点评 本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知tanα=a,求$\frac{1+sin2α-cos2α}{1+sin2α+cos2α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{|{e}^{x+1}-\frac{3}{e}|-a,x≤0}\\{lgx+a,x>0}\end{array}\right.$(a∈R).
①若f(x)有两个零点,则实数a的取值范围是$\frac{3}{e}$<a≤e-1;
②若f(x)有三个零点,则实数a的取值范围是0<a<$\frac{3}{e}$;
③若y=f(x)的图象与y=kx-a的图象有四个交点,则实数k的取值范围是-$\frac{1}{e}$<k<0;
④若y=f(x)的图象与y=kx-a的图象有三个交点,则k=-e.
其中正确结论的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知四棱锥P-ABCD中,面ABCD为矩形,PA⊥面ABCD,$PA=AD=\frac{1}{2}AB$,M为PB的中点,N、S分别为AB、CD上的点,且$AN=CS=\frac{1}{4}AB$.
(1)证明:DM⊥SN;
(2)求SN与平面DMN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列有关命题正确的是(  )
A.若命题p:?x0∈R,x${\;}_{0}^{2}$-x0+1<0,则¬p:?x∉R,x2-x+1≥0
B.命题“若x=y,则cosx=cosy”的逆否命题为真命题
C.已知相关变量(x,y)满足线性回归方程$\widehat{y}$=2-3x,若变量x增加一个单位,则y平均增加3个单位
D.已知随机变量X~N(2,σ2),若P(X<a)=0.32,则P(X>4-a)=0.68

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线x-ay=4在y轴上的截距是2,则a等于(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知p:“$\frac{x-2}{x+2}$≤0”,q:“x2-2x+1-m2<0(m<0)”,命题“若¬p,则¬q”为假命题,“若¬q,则¬p”为真命题,则实数m的取值范围是(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.有一名同学家开了小卖部,他为了研究气温对某种饮料销售的影响,记录了2015年7月至12月每月15号的下午14时的气温和当天卖出的饮料杯数,得到如下资料:
日期7月15日8月15日9月15日10月15日11月15日12月15日
摄氏温度x(℃)36353024188
饮料杯数y27292418155
改同学确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选中的2组数据进行检验.
(1)求选取2组数据恰好是相邻两个月的概率;
(2)若选中的是8月与12月的两组数据,根据剩下的4组数据,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(3)若由线性回归方程得到的估计数据与所选出的检验数据误差不超过3杯,则认为得到的线性回归方程是理想的,请问(2)所得到的线性回归方程是否理想.
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线y=bx+a的斜率和截距的最小二乘估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n})({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列四个命题:
①垂直于同一条直线的两条直线平行;
②平行于同一直线的两条直线平行;
③既不平行也不相交的两条直线是异面直线;
④不同在任一平面内的两条直线是异面直线.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案