精英家教网 > 高中数学 > 题目详情
11.等差数列{an}前n项和为Sn,公差d<0,若S20>0,S21<0,当Sn取得最大值时,n的值为10.

分析 由等差数列的求和公式和等差数列的性质结合题意易得数列{an}前10项均为正数,从第11项开始为负数,可得答案.

解答 解:由题意可得S20=$\frac{20({a}_{1}+{a}_{20})}{2}$=10(a1+a20)=10(a10+a11)>0,
S21=$\frac{21({a}_{1}+{a}_{21})}{2}$=$\frac{21×2{a}_{11}}{2}$=21a11<0,
∴a10+a11>0,a11<0,∴a10>0,a11<0,
∴等差数列{an}前10项均为正数,从第11项开始为负数,
∴当Sn取得最大值时,n的值为10
故答案为:10

点评 本题考查等差数列的求和公式和等差数列的性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图,动点A在函数$y=\frac{1}{x}(x<0)$的图象上,动点B在函数$y=\frac{2}{x}(x>0)$的图象上,过点A,B分别向x轴,y轴作垂线,垂足分别为A1,A2,B1,B2,若|A1B1|=4,则|A2B2|的最小值为(  )
A.$3+2\sqrt{2}$B.$\frac{{3+2\sqrt{2}}}{4}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)=lnx,g(x)=f(x)+f′(x)
(1)求f(x)=lnx在点(e,f(e))的切线方程;
(2)求g(x)的单调区间和最小值;
(3)求a的取值范围,使得g(a)-g(x)<$\frac{1}{a}$对任意x>0成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆O:x2+y2=4与x轴交于点A和B,P(异于A,B)是圆O上的动点,PD⊥AB交AB与D,PE=$\frac{1}{3}$ED,直线PA与BE交于点C,点C的轨迹方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$(x≠±2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,$\overrightarrow{c}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$,其中x,y∈R,且2x+y=4,$\overrightarrow{d}$为非零向量,则|$\frac{\overrightarrow{d}}{|\overrightarrow{d}|}$-$\overrightarrow{c}$|的最小值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某网络机构公布某单位关于上网者使用网络浏览器A、B的信息:
①316人使用A;
②478人使用B;
③104人同时使用A和B;
④567人只使用A、B中的一种网络浏览器.
则这条信息为假(填“真”或“假”),理由是由①②③知只使用一种浏览器的人数为:316-104+478-104=586.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,若输出s的值为22,那么输入的n值等于(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点A为抛物线C:x2=4y上的动点(不含原点),过点A的切线交x轴于点B,设抛物线C的焦点为F,则△ABF(  )
A.一定是直角B.一定是锐角
C.一定是钝角D.上述三种情况都可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知某几何体的三视图(单位:cm)如图所示,则此几何体的体积是7cm3

查看答案和解析>>

同步练习册答案