精英家教网 > 高中数学 > 题目详情
设f(x)=
x
0
sint
dt,则f′(x)=
 
考点:导数的运算
专题:导数的概念及应用
分析:根据牛莱公式求出f(x)的解析式,再根据导数公式求出f′(x).
解答: 解:令G(t)=
sint
,G′(t)=f(t),
∴f(x)=
x
0
sint
dt=
x
0
g(t)dt=G(x)-G(0),
∴f′(x)=G′(x)-[G(0)]′=
sinx

故答案为:
sinx
点评:本题主要考查了积分和导数的求解公式,属于基本知识,基本运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知a=4,b=4
3
,A=30°,B为锐角,那么角A,B,C的大小关系为(  )
A、A>B>C
B、B>A>C
C、C>B>A
D、C>A>B

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
)的部分图象如图:
(1)求函数f(x)的解析式及单调递增区间;
(2)将函数f(x)图象向右平移
π
6
个单位长度得到函数m(x)的图象,g(x)=2bcos2x(b>0且b∈R),G(x)=m(x)+g(x),当x∈[0,
π
4
]时,求函数G(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(
1
3
 x2-2x,g(x)=3x-6,求满足f(x)≥g(x)的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2ln(1+x)+ax2-2x+3(a>0)
(1)求y=f(x)在(0,f(0))处的切线方程;
(2)求y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
4
-β)=-
12
13
,-
π
4
<β<
4
,cos(α+
4
)=
4
5
4
<α<
4
,求:
(1)sin2β;
(2)sin(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数y=Acos(2x+φ)(A>0)的图象关于(
3
,0)中心对称,那么φ的最小正值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下几种说法:
①若两条直线平行,则它们的斜率相等;
②若两条直线的斜率之积为-1,则它们互相垂直;
③若直线l的倾斜角为θ,则该直线的斜率k=tanθ;
④直线l的方程为
2x
a2
+
y
b2
=-1(ab≠0),则该直线在y轴上的截距为-b2
其中正确的说法的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为2.
(1)求异面直线BC1与B1D1所成的角;
(2)求三棱锥A1-AB1D1的体积.

查看答案和解析>>

同步练习册答案