精英家教网 > 高中数学 > 题目详情
7.M={(x,y)|y=x-1},N={(x,y)|y=ex-2},则M∩N中有多少个元素(  )
A.1B.2C.3D.4

分析 令f(x)=ex-2-(x-1),利用导数研究函数的单调性极值与最值即可得出.

解答 解:令f(x)=ex-2-(x-1),
则f′(x)=ex-2-1,
可知:f′(2)=0,x=2时,x<2时,f′(x)<0,此时函数f(x)单调递减;x>2时,f′(x)>0,此时函数f(x)单调递增.
函数f(x)取得极小值即最小值,
∴M∩N中有1个元素(2,1),
故选:A.

点评 本题考查了利用导数研究函数的单调性极值与最值、集合,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知等比数列{an}满足:a1=1,Sn为其前n项和,2S1,2S3,5S2成等差数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=log${\;}_{\frac{3}{4}}$|a1|+log${\;}_{\frac{3}{4}}$|a2|+…+log${\;}_{\frac{3}{4}}$|an+2|(bn≠0),求数列{$\frac{1}{{b}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.x-2y+3>0表示的平面区域在直线x-2y+3=0的下方.(填“上”或“下”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在半径为$\sqrt{2}$的⊙O中,直线l和⊙O相切于点C,将直线l匀速向上移动,弧$\widehat{ACB}$所对的圆心角为x,直线l扫过的面积为y=f(x),则y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C的所对的边分别是a,b,c,已知cosC=$\frac{1}{4}$,a2=b2+$\frac{1}{2}$c2
(Ⅰ)求sin(A-B)的值;
(Ⅱ)c=$\sqrt{10}$,求a和b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=$\left\{\begin{array}{l}{{2}^{x-1}+x,x≤0}\\{-1+lnx,x>0}\end{array}\right.$ 的零点个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从两个集合{1,2,-3,-4},{-5,-6,7,8}中各取一个数A,B,则曲线$\frac{{x}^{2}}{A}$+$\frac{{y}^{2}}{B}$=1的离心率大于2的概率是(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{2}^{2}}$=1(a>0)的左、右焦点,P为双曲线上的一点,若∠F1PF1=60°,则△F1PF2的面积是(  )
A.$\frac{4\sqrt{3}}{3}$B.4$\sqrt{3}$C.2$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的离心率为e,则“e>$\sqrt{2}$”是“0<a<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案