精英家教网 > 高中数学 > 题目详情
7.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的离心率为e,则“e>$\sqrt{2}$”是“0<a<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 运用双曲线的离心率公式,结合a,b,c的关系,由充分必要条件的定义,以及不等式的性质,即可得到结论.

解答 解:由题意可得e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}+4}}{a}$=$\sqrt{1+\frac{4}{{a}^{2}}}$,
若e>$\sqrt{2}$,即$\sqrt{1+\frac{4}{{a}^{2}}}$>$\sqrt{2}$,
即有$\frac{4}{{a}^{2}}$>1,解得0<a<2.
由0<a<2,推不到0<a<1;
由0<a<1,可得e=$\sqrt{1+\frac{4}{{a}^{2}}}$>$\sqrt{5}$>$\sqrt{2}$,
由充分必要条件的定义,可得
“e>$\sqrt{2}$”是“0<a<1”的必要不充分条件.
故选:B.

点评 本题考查充分必要条件的判断,注意运用双曲线的离心率公式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.M={(x,y)|y=x-1},N={(x,y)|y=ex-2},则M∩N中有多少个元素(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.平面直角坐标系xOy中,双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F(2,0),以F为圆心,FO为半径的圆与双曲线的两条渐近线分别交于A,B(不同于O),当|$\overrightarrow{AB}$|取最大值时双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线C:${x^2}-\frac{y^2}{8}=1$的左右焦点分别是F1,F2,过F2的直线l与C的左右两支分别交于A,B两点,且|AF1|=|BF1|,则|AB|=(  )
A.$2\sqrt{2}$B.3C.4D.$2\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.关于双曲线$\frac{x^2}{16}-\frac{y^2}{4}=1$与$\frac{y^2}{16}-\frac{x^2}{4}=1$的焦距和渐近线,下列说法正确的是(  )
A.焦距相等,渐近线相同B.焦距相等,渐近线不相同
C.焦距不相等,渐近线相同D.焦距不相等,渐近线不相同

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.双曲线$\frac{{x}^{2}}{4}$-y2=1的右顶点到该双曲线一条渐近线的距离为(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{4\sqrt{5}}{5}$C.$\frac{2\sqrt{3}}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,a2+a3=8,前7项和S7=49,则数列{an}的公差等于(  )
A.1B.2C.$\frac{20}{3}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A1,A2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右顶点,以线段A1A2为直径的圆与双曲线C的渐近线的一个交点为(1,$\sqrt{3}$),则C的方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,过点F1作圆x2+y2=a2的一条切线与双曲线的渐近线在第二象限内交于点A,同时这条切线交双曲线的右支于点B,且|AB|=|BF2|,则双曲线的渐近线的斜率为(  )
A.±2B.±$\sqrt{5}$C.±3D.±5

查看答案和解析>>

同步练习册答案