精英家教网 > 高中数学 > 题目详情
5.已知△ABC是斜三角形,角A,B,C所对的边分别为a,b,c,若csinA=$\sqrt{3}$acosC,c=$\sqrt{21}$且sinC+sin(B-A)=5sin2A,则△ABC的面积为$\frac{5\sqrt{3}}{4}$.

分析 由csinA=$\sqrt{3}$acosC,利用正弦定理可得sinCsinA=$\sqrt{3}$sinAcosC,于是sinC=$\sqrt{3}$cosC,即可得出C的值,由sinC+sin(B-A)=5sin2A,sinC=sin(A+B),可得sinB=5sinA,由正弦定理可知b=5a,由余弦定理c2=a2+b2-2abcosC,联立解出,再利用三角形面积计算公式即可得出.

解答 解:∵csinA=$\sqrt{3}$acosC,由正弦定理可得sinCsinA=$\sqrt{3}$sinAcosC,
∵sinA≠0,
∴sinC=$\sqrt{3}$cosC,
得tanC=$\frac{sinC}{cosC}$=$\sqrt{3}$,
∵C∈(0,π),
∴C=$\frac{π}{3}$.
又∵sinC+sin(B-A)=5sin2A,sinC=sin(A+B),
∴sin(A+B)+sin(B-A)=5sin2A,
∴2sinBcosA=2×5sinAcosA,
∵△ABC为斜三角形,
∴cosA≠0,
∴sinB=5sinA,由正弦定理可知b=5a,(1)
∵由余弦定理c2=a2+b2-2abcosC,
∴21=a2+b2-2ab×$\frac{1}{2}$,(2)
由(1)(2)解得a=5,b=1,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×1×5×$\frac{\sqrt{3}}{2}$=$\frac{5\sqrt{3}}{4}$.
故答案为:$\frac{5\sqrt{3}}{4}$.

点评 本题考查了正弦定理余弦定理、三角形面积计算公式,考查了转化思想,推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.(1)化简:[2sin50°+sin10°(1+$\sqrt{3}$tan10°)]$\sqrt{1+cos{20°}}$
(2)求证:$\frac{tan5α+tan3α}{cos2αcos4α}$=4(tan5α-tan3α).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|a-b<x<a+b},B={x<-1或x>5}
(1)若b=1,A∩B=A,求a的取值范围;
(2)若a=1,A∩B=∅,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点A(12,6),动点P在抛物线x2=4y上,则P点到A的距离与P到x的距离之和的最小值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.写出命题“若m>0,则2x2+3x-m=0有实根”的逆命题,否命题和逆否命题;并判断逆否命题的真假性,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数g(x)=3x+t的图象不经过第二象限,则t的取值范围为(  )
A.t≤-1B.t<-1C.t≤-3D.t≥-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.郴州市某路公共汽车每7分钟一趟,某位同学每天乘该路公共汽车上学,则他等车时间小于3分钟的概率为(  )
A.$\frac{4}{7}$B.$\frac{3}{7}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.高一(3)班共有50人,若其中文艺爱好者20人,体育爱好者15人,文艺.体育均不爱好的20人,则文艺.体育均爱好的人数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.不等式$\frac{{{x^2}+x}}{2x-1}≤1$的解集是{x|x<$\frac{1}{2}$}.

查看答案和解析>>

同步练习册答案