10£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£®ÒÑÖª$\overrightarrow m=£¨{sinC£¬{b^2}-{a^2}-{c^2}}£©£¬\overrightarrow n=£¨{2sinA-sinC£¬{c^2}-{a^2}-{b^2}}£©$ÇÒ$\overrightarrow m¡Î\overrightarrow n$£»
£¨¢ñ£©Çó½ÇBµÄ´óС£»
£¨¢ò£©ÉèT=sin2A+sin2B+sin2C£¬ÇóTµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÒÑÖªÀûÓÃÏòÁ¿¹²ÏßµÄÐÔÖÊ£¬ÓàÏÒ¶¨Àí£¬ÕýÏÒ¶¨Àí¿ÉµÃ$\frac{sinC}{2sinA-sinC}$=$\frac{sinCcosB}{sinBcosC}$£¬ÀûÓÃsinC¡Ù0£¬sinA¡Ù0£¬½áºÏÈý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óã¬Èý½ÇÐÎÄڽǺͶ¨Àí¿ÉÇó$cosB=\frac{1}{2}$£¬½áºÏBµÄ·¶Î§¼´¿ÉµÃ½âBµÄÖµ£®
£¨¢ò£©ÀûÓÃÈý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óû¯¼ò¿ÉµÃT=$\frac{7}{4}$-$\frac{1}{2}$cos£¨2A+$\frac{¦Ð}{3}$£©£¬ÓÉ·¶Î§$0£¼A£¼\frac{2¦Ð}{3}$£¬¿ÉÇó$\frac{¦Ð}{3}£¼2A+\frac{¦Ð}{3}£¼\frac{5¦Ð}{3}$£¬ÀûÓÃÓàÏÒº¯ÊýµÄÐÔÖʼ´¿ÉµÃ½âTµÄȡֵ·¶Î§£®

½â´ð £¨±¾ÌâÂú·ÖΪ12·Ö£©
½â£º£¨1£©ÒòΪ£º$\overrightarrow m=£¨{sinC£¬{b^2}-{a^2}-{c^2}}£©£¬\overrightarrow n=£¨{2sinA-sinC£¬{c^2}-{a^2}-{b^2}}£©$ÇÒ$\overrightarrow m¡Î\overrightarrow n$£»
ËùÒÔ£º$\frac{sinC}{2sinA-sinC}=\frac{{{b^2}-{a^2}-{c^2}}}{{{c^2}-{a^2}-{b^2}}}=\frac{-2accosB}{-2abcosC}=\frac{{c{cosB}}}{bcosC}=\frac{sinCcosB}{sinBcosC}$£¬¡­£¨1·Ö£©
ÒòΪ£ºsinC¡Ù0£¬
ËùÒÔ£ºsinBcosC=2sinAcosB-sinCcosB£¬¡­£¨2·Ö£©
ËùÒÔ£º2sinAcosB=sinBcosC+sinCcosB=sin£¨B+C£©=sinA£¬¡­£¨4·Ö£©
ÒòΪ£ºsinA¡Ù0£¬
ËùÒÔ£º$cosB=\frac{1}{2}$£¬
ÒòΪ£º0£¼B£¼¦Ð£¬
ËùÒÔ£º$B=\frac{¦Ð}{3}$£»¡­£¨6·Ö£©
£¨¢ò£©ÒòΪ£º$T={sin^2}A+{sin^2}B+{sin^2}C=\frac{1}{2}£¨1-cos2A£©+\frac{3}{4}+\frac{1}{2}£¨1-cos2C£©$¡­£¨7·Ö£©
=$\frac{7}{4}-\frac{1}{2}£¨cos2A+cos2C£©=\frac{7}{4}-\frac{1}{2}[{cos2A+cos£¨{\frac{4¦Ð}{3}-2A}£©}]$¡­£¨8·Ö£©
=$\frac{7}{4}-\frac{1}{2}£¨{\frac{1}{2}cos2A-\frac{{\sqrt{3}}}{2}sin2A}£©=\frac{7}{4}-\frac{1}{2}cos£¨{2A+\frac{¦Ð}{3}}£©$¡­£¨9·Ö£©
ÒòΪ£º$0£¼A£¼\frac{2¦Ð}{3}$£¬
ËùÒÔ£º$0£¼2A£¼\frac{4¦Ð}{3}$£¬
¹Ê£º$\frac{¦Ð}{3}£¼2A+\frac{¦Ð}{3}£¼\frac{5¦Ð}{3}$£¬¡­£¨10·Ö£©
Òò´Ë£º-1¡Ücos£¨2A+$\frac{¦Ð}{3}$£©$£¼\frac{1}{2}$£¬
ËùÒÔ£º$\frac{3}{2}$£¼T¡Ü$\frac{9}{4}$£®¡­£¨12·Ö£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÏòÁ¿¹²ÏßµÄÐÔÖÊ£¬ÓàÏÒ¶¨Àí£¬ÕýÏÒ¶¨Àí£¬Èý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óã¬Èý½ÇÐÎÄڽǺͶ¨Àí£¬ÓàÏÒº¯ÊýµÄÐÔÖÊÔÚ½âÈý½ÇÐÎÖеÄ×ÛºÏÓ¦Ó㬿¼²éÁËת»¯Ë¼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÇóÖ¤£º¹ØÓÚxµÄ·½³Ìax2+2x+1=0ÖÁÉÙÓÐÒ»¸ö¸º¸ùµÄ³äÒªÌõ¼þÊÇa¡Ü1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®µÈ²îÊýÁÐ{an}¸÷Ïî¾ùΪÕýÊý£¬ÆäǰnÏîºÍΪSn£¬a2S3=75ÇÒa1£¬a4£¬a13³ÉµÈ±ÈÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨2£©ÈôÊýÁÐ{an}ΪµÝÔöÊýÁУ¬ÇóÖ¤£º$\frac{1}{3}$¡Ü$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}+¡­+\frac{1}{{S}_{n}}$$£¼\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ò»¸ö¶àÃæÌåµÄÈýÊÓͼ£¨µ¥Î»£ºcm£©ÈçͼËùʾ£¬ÆäÖÐÕýÊÓͼÊÇÕý·½ÐΣ¬²àÊÓͼÊǵÈÑüÈý½ÇÐΣ¬Ôò¸Ã¼¸ºÎÌåµÄ±íÃæ»ýΪ88cm2£»Ìå»ýΪ48cm3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÈýÀâ×¶P-ABCÊǰ뾶Ϊ3µÄÇòÄÚ½ÓÕýÈýÀâ×¶£¬ÔòP-ABCÌå»ýµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®8$\sqrt{3}$B£®24C£®16$\sqrt{3}$D£®24$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªP={x|x£¼2}£¬Q={x|x£¼a}£¬Èô¡°x¡ÊP¡±ÊÇ¡°x¡ÊQ¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©£¨¡¡¡¡£©
A£®£¨-¡Þ£¬2£©B£®£¨-¡Þ£¬2]C£®£¨2£¬+¡Þ£©D£®[2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èçͼ£¬ABΪԲOµÄÖ±¾¶£¬EΪABµÄÑÓ³¤ÏßÉÏÒ»µã£¬¹ýE×÷Ô²OµÄÇÐÏߣ¬ÇеãΪC£¬¹ýA×÷Ö±ÏßECµÄ´¹Ïߣ¬´¹×ãΪD£®ÈôAB=4£¬CE=2$\sqrt{3}$£¬ÔòAD=£¨¡¡¡¡£©
A£®3B£®6C£®2D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Ä³ÎïÌåÈýÊÓͼÈçÏ£¬Ôò¸ÃÎïÊÇ£¨¡¡¡¡£©
A£®Öпյij¤·½Ì壬Ìå»ýΪ72cm3B£®Öпյij¤·½Ì壬Ìå»ýΪ66cm3
C£®ÊµÐij¤·½Ì壬Ìå»ýΪ72cm3D£®ÊµÐÄÔ²ÖùÌ壬Ìå»ýΪ66cm3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Ò»¸öÀºÇòÔ˶¯Ô±Í¶ÀºÒ»´ÎµÃ3·ÖµÄ¸ÅÂÊΪa£¬µÃ2·ÖµÄ¸ÅÂÊΪb£¨a£¬b¡Ù0£©£¬²»µÃ·ÖµÄ¸ÅÂÊΪ$\frac{a+b}{2}$£®ÈôËûͶÀºÒ»´ÎµÃ·Ö¦ÎµÄÊýѧÆÚÍû$E¦Î£¾\frac{7}{4}$£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨$\frac{5}{12}$£¬$\frac{2}{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸