·ÖÎö £¨1£©ÓÉÒÑÖªÀûÓÃÏòÁ¿¹²ÏßµÄÐÔÖÊ£¬ÓàÏÒ¶¨Àí£¬ÕýÏÒ¶¨Àí¿ÉµÃ$\frac{sinC}{2sinA-sinC}$=$\frac{sinCcosB}{sinBcosC}$£¬ÀûÓÃsinC¡Ù0£¬sinA¡Ù0£¬½áºÏÈý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óã¬Èý½ÇÐÎÄڽǺͶ¨Àí¿ÉÇó$cosB=\frac{1}{2}$£¬½áºÏBµÄ·¶Î§¼´¿ÉµÃ½âBµÄÖµ£®
£¨¢ò£©ÀûÓÃÈý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óû¯¼ò¿ÉµÃT=$\frac{7}{4}$-$\frac{1}{2}$cos£¨2A+$\frac{¦Ð}{3}$£©£¬ÓÉ·¶Î§$0£¼A£¼\frac{2¦Ð}{3}$£¬¿ÉÇó$\frac{¦Ð}{3}£¼2A+\frac{¦Ð}{3}£¼\frac{5¦Ð}{3}$£¬ÀûÓÃÓàÏÒº¯ÊýµÄÐÔÖʼ´¿ÉµÃ½âTµÄȡֵ·¶Î§£®
½â´ð £¨±¾ÌâÂú·ÖΪ12·Ö£©
½â£º£¨1£©ÒòΪ£º$\overrightarrow m=£¨{sinC£¬{b^2}-{a^2}-{c^2}}£©£¬\overrightarrow n=£¨{2sinA-sinC£¬{c^2}-{a^2}-{b^2}}£©$ÇÒ$\overrightarrow m¡Î\overrightarrow n$£»
ËùÒÔ£º$\frac{sinC}{2sinA-sinC}=\frac{{{b^2}-{a^2}-{c^2}}}{{{c^2}-{a^2}-{b^2}}}=\frac{-2accosB}{-2abcosC}=\frac{{c{cosB}}}{bcosC}=\frac{sinCcosB}{sinBcosC}$£¬¡£¨1·Ö£©
ÒòΪ£ºsinC¡Ù0£¬
ËùÒÔ£ºsinBcosC=2sinAcosB-sinCcosB£¬¡£¨2·Ö£©
ËùÒÔ£º2sinAcosB=sinBcosC+sinCcosB=sin£¨B+C£©=sinA£¬¡£¨4·Ö£©
ÒòΪ£ºsinA¡Ù0£¬
ËùÒÔ£º$cosB=\frac{1}{2}$£¬
ÒòΪ£º0£¼B£¼¦Ð£¬
ËùÒÔ£º$B=\frac{¦Ð}{3}$£»¡£¨6·Ö£©
£¨¢ò£©ÒòΪ£º$T={sin^2}A+{sin^2}B+{sin^2}C=\frac{1}{2}£¨1-cos2A£©+\frac{3}{4}+\frac{1}{2}£¨1-cos2C£©$¡£¨7·Ö£©
=$\frac{7}{4}-\frac{1}{2}£¨cos2A+cos2C£©=\frac{7}{4}-\frac{1}{2}[{cos2A+cos£¨{\frac{4¦Ð}{3}-2A}£©}]$¡£¨8·Ö£©
=$\frac{7}{4}-\frac{1}{2}£¨{\frac{1}{2}cos2A-\frac{{\sqrt{3}}}{2}sin2A}£©=\frac{7}{4}-\frac{1}{2}cos£¨{2A+\frac{¦Ð}{3}}£©$¡£¨9·Ö£©
ÒòΪ£º$0£¼A£¼\frac{2¦Ð}{3}$£¬
ËùÒÔ£º$0£¼2A£¼\frac{4¦Ð}{3}$£¬
¹Ê£º$\frac{¦Ð}{3}£¼2A+\frac{¦Ð}{3}£¼\frac{5¦Ð}{3}$£¬¡£¨10·Ö£©
Òò´Ë£º-1¡Ücos£¨2A+$\frac{¦Ð}{3}$£©$£¼\frac{1}{2}$£¬
ËùÒÔ£º$\frac{3}{2}$£¼T¡Ü$\frac{9}{4}$£®¡£¨12·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÏòÁ¿¹²ÏßµÄÐÔÖÊ£¬ÓàÏÒ¶¨Àí£¬ÕýÏÒ¶¨Àí£¬Èý½Çº¯ÊýºãµÈ±ä»»µÄÓ¦Óã¬Èý½ÇÐÎÄڽǺͶ¨Àí£¬ÓàÏÒº¯ÊýµÄÐÔÖÊÔÚ½âÈý½ÇÐÎÖеÄ×ÛºÏÓ¦Ó㬿¼²éÁËת»¯Ë¼Ï룬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 8$\sqrt{3}$ | B£® | 24 | C£® | 16$\sqrt{3}$ | D£® | 24$\sqrt{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬2£© | B£® | £¨-¡Þ£¬2] | C£® | £¨2£¬+¡Þ£© | D£® | [2£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3 | B£® | 6 | C£® | 2 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Öпյij¤·½Ì壬Ìå»ýΪ72cm3 | B£® | Öпյij¤·½Ì壬Ìå»ýΪ66cm3 | ||
| C£® | ʵÐij¤·½Ì壬Ìå»ýΪ72cm3 | D£® | ʵÐÄÔ²ÖùÌ壬Ìå»ýΪ66cm3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com