精英家教网 > 高中数学 > 题目详情
1.等差数列{an}各项均为正数,其前n项和为Sn,a2S3=75且a1,a4,a13成等比数列.
(1)求数列{an}的通项公式an
(2)若数列{an}为递增数列,求证:$\frac{1}{3}$≤$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}+…+\frac{1}{{S}_{n}}$$<\frac{3}{4}$.

分析 (1)设数列{an}的公差为d(d≥0),由已知列式求得首项和公差,则等差数列的通项公式可求;
(2)由(Ⅰ)求出等差数列的通项公式,进一步求得前n项和,取倒数后利用裂项相消法求出数列前n项和的倒数和,即可证得不等式右边,再由数列的函数特性证明左边得答案.

解答 (1)解:设数列{an}的公差为d(d≥0),由已知,
则有$\left\{{\begin{array}{l}{3{a_2}^2=75}\\{{a_1}{a_{13}}={a_4}^2}\end{array}}\right.$,∵an>0,∴$\left\{{\begin{array}{l}{{a_2}=5}\\{{a_1}{a_{13}}={a_4}^2}\end{array}}\right.$,
即$\left\{{\begin{array}{l}{{a_1}+d=5}\\{{a_1}({{a_1}+12d})={{({{a_1}+3d})}^2}}\end{array}}\right.$,解得$\left\{{\begin{array}{l}{{a_1}=5}\\{d=0}\end{array}}\right.$,或$\left\{{\begin{array}{l}{{a_1}=3}\\{d=2}\end{array}}\right.$.
an=5或an=2n+1;
(2)∵数列{an}为递增数列,∴由(Ⅰ)知an=2n+1,
∴${S}_{n}=3n+\frac{n(n-1)}{2}×2=n(n+2)$,n∈N*
∴$\frac{1}{{S}_{n}}=\frac{1}{n(n+2)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
∴$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}+…+\frac{1}{{S}_{n}}=\frac{1}{2}(1-\frac{1}{3})+\frac{1}{2}(\frac{1}{2}-\frac{1}{4})$$+…+\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$
=$\frac{1}{2}[(1+\frac{1}{2})-(\frac{1}{n+1}+\frac{1}{n+2})]=\frac{3}{4}-\frac{1}{2}(\frac{1}{n+1}+\frac{1}{n+2})$$<\frac{3}{4}$,
记${T}_{n}=\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}+…+\frac{1}{{S}_{n}}$
由$\frac{1}{{S}_{n}}>0$,则Tn关于n递增.
∴${T}_{n}>{T}_{1}=\frac{1}{{S}_{1}}=\frac{1}{3}$.
综上可得:$\frac{1}{3}$≤$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}+…+\frac{1}{{S}_{n}}$$<\frac{3}{4}$.

点评 本题考查数列递推式,考查了裂项相消法求数列的前n项和,训练了利用数列的函数特性求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图2,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,CC1=AB=AC=2,∠BAC=90°,D为BC的中点.

(Ⅰ)如图1给出了该三棱柱三视图中的正视图,请据此在框内对应位置画出它的侧视图;
(Ⅱ)求证:A1C∥平面AB1D;
(Ⅲ)(文科做)若点P是线段A1C上的动点,求三棱锥P-AB1D的体积.
(理科做)求二面角B-AB1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=$\sqrt{6}$,四边形ABCD是边长为2的菱形,∠ABC=60°,M,N分别为BC和PB的中点..
(Ⅰ)证明:平面PBC⊥平面PMA;
(Ⅱ)求二面角N-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.关于x的不等式kx2-2|x-1|+3k<0的解集为空集,则k的取值范围[1,+∞) .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,AE=$\frac{1}{2}$CD,侧视图是直角梯形,俯视图是等腰三角形,有关数据如图所示.

(1)求出该几何体的体积;
(2)试问在边CD上是否存在点N,使MN⊥平面BDE?若存在,确定点N的位置(不需证明);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知某几何体的三视图,如图所示,则该几何体的体积为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{5\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=sinωx(ω>0)在一个周期内的图象如图所示,则ω的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C所对的边分别为a,b,c.已知$\overrightarrow m=({sinC,{b^2}-{a^2}-{c^2}}),\overrightarrow n=({2sinA-sinC,{c^2}-{a^2}-{b^2}})$且$\overrightarrow m∥\overrightarrow n$;
(Ⅰ)求角B的大小;
(Ⅱ)设T=sin2A+sin2B+sin2C,求T的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.2015年,一列CRH5型高速车组进行300000千米直线运营考核,标志中国高铁车从“中国制造”到“中国创新”的飞跃,将300000用科学记数法表示为(  )
A.3×106B.3×105C.0.3×106D.30×104

查看答案和解析>>

同步练习册答案