分析 (1)nan+1=Sn+n(n+1)(n∈N*),n≥2时,(n-1)an=Sn-1+n(n-1),相减可得:an+1-an=2,又a1=-1,利用等差数列的通项公式即可得出.
(2)bn=$\frac{{a}_{n}}{{3}^{n}}$=$\frac{2n-3}{{3}^{n}}$,利用错位相减法即可得出.
解答 解:(1)nan+1=Sn+n(n+1)(n∈N*),n≥2时,(n-1)an=Sn-1+n(n-1),
∴nan+1-(n-1)an=an+2n,化为:an+1-an=2,又a1=-1,
∴数列{an}是等差数列,公差为2,首项为-1.
∴an=-1+2(n-1)=2n-3.
(2)bn=$\frac{{a}_{n}}{{3}^{n}}$=$\frac{2n-3}{{3}^{n}}$,
∴数列{bn}的前n项和Tn=-$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{3}{{3}^{3}}$+…+$\frac{2n-3}{{3}^{n}}$,
$\frac{1}{3}{T}_{n}$=$-\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{2n-6}{{3}^{n}}$+$\frac{2n-3}{{3}^{n+1}}$,
∴$\frac{2}{3}{T}_{n}$=-$\frac{1}{3}$+$2(\frac{1}{{3}^{2}}+\frac{1}{{3}^{3}}+…+\frac{1}{{3}^{n}})$-$\frac{2n-3}{{3}^{n+1}}$=-$\frac{1}{3}+$2×$\frac{\frac{1}{9}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}$-$\frac{2n-3}{{3}^{n+1}}$,
可得:Tn=-$\frac{n}{{3}^{n}}$.
点评 本题考查了数列递推关系、等差数列与等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 组号 | 分组 | 频数 | 频率 |
| 第1组 | [160,165) | 5 | 0.050 |
| 第2组 | [165,170) | a | 0.350 |
| 第3组 | [170,175) | 30 | b |
| 第4组 | [175,180) | 20 | 0.200 |
| 第5组 | [180,185] | 10 | 0.100 |
| 合计 | 100 | 1.00 | |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 48种 | B. | 36种 | C. | 24种 | D. | 12种 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com