【题目】已知函数.
(1)若曲线过点,求曲线在点处的切线方程;
(2)求函数在区间上的最大值;
(3)若函数有两个不同的零点,,求证:.
【答案】(1);(2)①当时,;②当时,
③当时,;(3)详见解析.
【解析】
试题(1)因为点在曲线上,所以,解得,利用导数求得斜率为,故切线为;(2),将分成四类,讨论函数的单调区间进而求得最大值;(3)不妨设,因为,所以,,要证明,即证明,令,即证,令(),利用导数求得的最小值大于零即可.
试题解析:
(1)因为点在曲线上,所以,解得.
因为,所以切线的斜率为0,
所以切线方程为.
(2)因为,
①当时,,,
所以函数在上单调递增,则;
②当,即时,,,
所以函数在上单调递增,则;
③当,即时,
函数在上单调递增,在上单调递减,
则;
④当,即时,,,
函数在上单调递减,则.
综上,当时,;
当时,;
当时,.
(3)不妨设,
因为,
所以,,
可得,,
要证明,即证明,也就是,
因为,
所以即证明,
即,
令,则,于是,
令(),
则,
故函数在上是增函数,
所以,即成立,所以原不等式成立.
科目:高中数学 来源: 题型:
【题目】已知的内角A,B,C的对边分别为a,b,c,且满足.
(1)求角;
(2)若,___________________(从下列问题中任选一个作答,若选择多个条件分别解答,则按选择的第一个解答计分).
①的面积为,求的周长;
②的周长为21,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】银川市房管局为了了解该市市民2018年1月至2019年1月期间购买二手房情况,首先随机抽样其中200名购房者,并对其购房面积m(单位:平方米,)进行了一次调查统计,制成了如图所示的频率分布直方图.
(Ⅰ)试估计该市市民的平均购房面积:
(Ⅱ)现采用分层抽样的方法从购房面积位于的40位市民中随机取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在的概率,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x),g(x)1.
(1)若f(a)=2,求实数a的值;
(2)判断f(x)的单调性,并证明;
(3)设函数h(x)=g(x)(x>0),若h(2t)+mh(t)+4>0对任意的正实数t恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生的身体状况,某校随机抽取了一批学生测量体重.经统计,这批学生的体重数据(单位:千克)全部介于45至70之间.将数据分成以下5组:第1组,第2组,第3组,第4组,第5组,得到如图所示的频率分布直方图,现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生,则第3,4,5组抽取的学生人数依次为( )
A.4,5,6B.3,2,1C.2,4,5D.2,1,3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数在内为增函数,求实数的取值范围;
(2)若函数在内恰有两个零点,求实数的取值范围;
(3)已知,试估算的近似值,(结果精确到0.001)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P-ABCD中,PA平面ABCD,菱形ABCD的边长为2,且,点E、F分别是PA,CD的中点,
(1)求证:EF平面PBC
(2)若PC与平面ABCD所成角的大小为,求C到平面PBD的距离
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定一个n项的实数列,任意选取一个实数c,变换T(c)将数列a1,a2,…,an变换为数列|a1﹣c|,|a2﹣c|,…,|an﹣c|,再将得到的数列继续实施这样的变换,这样的变换可以连续进行多次,并且每次所选择的实数c可以不相同,第k(k∈N*)次变换记为Tk(ck),其中ck为第k次变换时选择的实数.如果通过k次变换后,数列中的各项均为0,则称T1(c1),T2(c2),…,Tk(ck)为“k次归零变换”.
(1)对数列:1,3,5,7,给出一个“k次归零变换”,其中k≤4;
(2)证明:对任意n项数列,都存在“n次归零变换”;
(3)对于数列1,22,33,…,nn,是否存在“n﹣1次归零变换”?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线过点且倾斜角为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,若曲线的极坐标方程为,且直线与曲线相交于,两点.
(1)写出曲线的直角坐标方程和直线的参数方程;
(2)若,求直线的直角坐标方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com