精英家教网 > 高中数学 > 题目详情
11.已知定义在(0,+∞)上的函数f(x)满足f′(x)+2f(x)=$\frac{lnx+\frac{1}{2}}{{e}^{2x}}$,且f(1)=$\frac{1}{{4e}^{2}}$,则不等式f(lnx)>f(3)的解集为(  )
A.(-∞,e3B.(0,e3C.(1,e3D.(e3,+∞)

分析 由题意可知:[e2x(x)]′=lnx+$\frac{1}{2}$,两边积分,求得函数f(x)的解析式,求导,利用函数的单调性,即可求得不等式的解集.

解答 解:由题意f′(x)+2f(x)=$\frac{lnx+\frac{1}{2}}{{e}^{2x}}$,即[e2x•f(x)]′=lnx+$\frac{1}{2}$,
两边积分可知:e2x(x)=xlnx-x+$\frac{1}{2}$x+C,
∴f(x)=$\frac{xlnx-\frac{1}{2}x+C}{{e}^{2x}}$,
由f(1)=$\frac{1}{{4e}^{2}}$,代入解得:C=$\frac{3}{4}$,
∴f(x)=$\frac{xlnx-\frac{1}{2}x+\frac{3}{4}}{{e}^{2x}}$,
求导f′(x)=$\frac{-2xlnx+lnx+x-1}{{e}^{2x}}$,由e2x>0
令g(x)=-2xlnx+lnx+x-1,求导g′(x)=-2lnx+$\frac{1}{x}$-1,
令g′(x)=0,解得:x=1,
当x>1时,g′(x)<0,函数单调递减,
当0<x<1时,g′(x)>0,函数单调递增,
∴当x=1时,f′(x)取最大值,最大值为0,
即f′(x)≤0恒成立,
∴f(x)=$\frac{xlnx-\frac{1}{2}x+\frac{3}{4}}{{e}^{2x}}$,单调递减,
∴由f(lnx)>f(3),则0<lnx<3,
即1<x<e3
故不等式的解集(1,e3),
故选:C.

点评 本题考查函数解析式的求法,考查不定积分的求法,利用导数求函数的单调性及最值,考查计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.(x-$\frac{1}{\sqrt{x}}$)n的展开式中,所有二项式系数之和为512,则展开式中x3的系数为126(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角α的终边经过点(3a-9,a+2),且sin2α≤0,sinα>0,则a的取值范围是(  )
A.(-2,3)B.[-2,3)C.(-2,3]D.[-2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x-1)ex+ax2有两个零点
(Ⅰ)当a=1时,求f(x)的最小值;
(Ⅱ)求a的取值范围;
(Ⅲ)设x1,x2是f(x)的两个零点,证明:x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(x2-a)e1-x,g(x)=f(x)+ae1-x-a(x-1).
(1)讨论f(x)的单调性;
(2)当a=1时,求g(x)在($\frac{3}{4}$,2)上的最大值;
(3)当f(x)有两个极值点x1,x2(x1<x2)时,总有x2f(x1)≤λg′(x1),求实数λ的值(g′(x)为g(x)的导函数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}是等差数列,其前n项和为Sn,数列{bn}是公比大于0的等比数列,且b1=-2a1=2,a3+b2=-1,S3+2b3=7.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=$\frac{(-1)^{n-1}{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,F为C的右焦点,E为C的上顶点,坐标原点O到直线EF的距离为$\sqrt{2}$.
(1)求椭圆C的方程;
(2)过点$(0,-\frac{2}{3})$且斜率为k的直线l与椭圆C交于A,B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:方程$\frac{{x}^{2}}{m+1}$+$\frac{{y}^{2}}{3-m}$=1表示焦点在y轴上的椭圆,命题q:关于x的方程x2+2mx+m+3=0无实根.
(1)若命题p为真命题,求实数m的取值范围;
(2)若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x+$\frac{1}{2}$
(Ⅰ)求函数f(x)=0时x的集合;
(Ⅱ)求函数f(x)在区间[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

同步练习册答案