精英家教网 > 高中数学 > 题目详情
11.若a<0,-1<b<0,则下列不等式关系成立的是(  )
A.ab2<ab<aB.a<ab<ab2C.ab2<a<abD.a<ab2<ab

分析 利用不等式的基本性质即可得出.

解答 解:∵a<0,-1<b<0,
∴ab>0,ab2<0,0<b2<1,
∴ab>ab2>a,
故选:D.

点评 本题考查了不等式的基本性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$,满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,且对一切实数x,|$\overrightarrow{a}$+x$\overrightarrow{b}$|≥|$\overrightarrow{a}$+$\overrightarrow{b}$|恒成立,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角的大小为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x+alnx,在x=1处的切线与直线x+2y=0垂直,函数g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)求实数a的值;
(2)设x1,x2(x1<x2)是函数g(x)的两个极值点,记t=$\frac{x_1}{x_2}$,若b≥$\frac{13}{3}$,
①t的取值范围;
②求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为支援西部教育事业,从某校118名教师中随机抽取16名教师组成暑期西部讲师团.若先用简单随机抽样从118名教师中剔除6名,剩下的112名再按系统抽样的方法进行,则每人入选的可能性(  )
A.不全相等B.都相等,且为$\frac{8}{59}$C.均不相等D.都相等,且为$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知是一个三角形的内角,且sinα+cosα=$\frac{1}{5}$
(1)求tanα的值;
(2)用tanα表示$\frac{1}{si{n}^{2}α-co{s}^{2}α}$并求其值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算下列各题:
(1)(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)•($\frac{\sqrt{3}}{2}$+$\frac{1}{2}$i); 
 (2)$\frac{(1+2i)^{2}+3(1-i)}{2+i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某中学举行了一次“环保知识竞赛”活动,为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出如图所示的频率分布直方图,但由于不慎丢失了部分数据.已知得分在[50,60)的有8人,在[90,100)的有2人,由此推测频率分布直方图中的x=(  )
A.0.04B.0.03C.0.02D.0.01

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在△ABC中,已知CA=2,CB=3,∠ACB=60°.
(1)求$\overrightarrow{CA}$•$\overrightarrow{CB}$
 (2)若H为AB的中点,试用向量知识求CH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式-6x2+2<x的解集是(-∞,-$\frac{2}{3}$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

同步练习册答案