精英家教网 > 高中数学 > 题目详情
1.已知直线l1:x-y=5,直线l2:x+2y=3,直线l1与l2的夹角的余弦值$\frac{\sqrt{10}}{10}$.

分析 利用两条直线的夹角公式求得tanθ的值,再利用同角三角函数的基本关系求得cosθ 的值.

解答 解:设直线l1与l2的夹角为锐角θ,∵直线l1与的斜率为1,直线l2的斜率为-$\frac{1}{2}$,
∴tanθ=|$\frac{-\frac{1}{2}-1}{1+(-\frac{1}{2})•1}$|=3=$\frac{sinθ}{cosθ}$,sin2θ+cos2θ=1,故有cosθ=$\frac{\sqrt{10}}{10}$,
故答案为:$\frac{\sqrt{10}}{10}$.

点评 本题主要考查两条直线的夹角公式的应用,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),过直线l:x=2上一点P作椭圆的切线,切点为A,当P点在x轴上时,切线PA的斜率为±$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)设O为坐标原点,求△POA面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数z=-3+i在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若函数满足f(x)=x,把此时的实数x称为函数y=f(x)的不动点.
(1)若函数y=xm-3的一个不动点是2,求m的值;
(2)若函数g(x)=x2+(a-4)x-3b是区间[b-a,b]上的偶函数
①求a、b的值,并求出这个函数的不动点;
②判断函数F(x)=g(x+1)-g(x-1)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:?x∈[-1,1],m≤x2,命题q:?x∈R,x2+mx+1>0,若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=1+4cosx-4sin2x,x∈[-$\frac{π}{4}$,$\frac{2π}{3}$],有(  )
A.最大值0,最小值-8B.最大值5,最小值-4
C.最大值5,最小值-3D.最大值2$\sqrt{2}$-1,最小值-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=loga$\frac{1-x}{1+x}$,(a>0且a≠1).
(1)求函数的定义域;
(2)判断函数的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若x∈(0,1),比较函数f(x)=x2,g(x)=x-2,h(x)=x${\;}^{\frac{1}{2}}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2lnx+$\frac{1}{3}$x3-$\frac{a}{2}$x2+3x.
(1)若a=2,求函数g(x)=$\frac{f(x)}{x}$的图象在点(1,g(1))处的切线方程;
(2)若函数f(x)在($\frac{1}{e}$,e)内存在两个极值点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案