精英家教网 > 高中数学 > 题目详情
全集U={a,b,c,d,e},M={a,d},N={a,c,e},则N∩∁UM为(  )
A、{c,e}
B、{a,c}
C、{d,e}
D、{a,e}
考点:交、并、补集的混合运算
专题:集合
分析:根据全集U及M求出M的补集,找出N与M补集的交集即可.
解答: 解:∵全集U={a,b,c,d,e},M={a,d},N={a,c,e},
∴∁UM={b,c,e},
则N∩∁UM={c,e}.
故选:A.
点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a>0且a≠1,若函数f(x)=loga(ax2-x)在区间[
1
2
,6]
上是增函数,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点A(2a,a-1)在以点C(0,1)为圆心,
5
为半径的圆上,则a的值为(  )
A、±1
B、0或1
C、-1或
1
5
D、1或-
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合M={x|y=
x2-x3
},N={x|y=
2-(
1
2
)x
},则M∩N=(  )
A、[-1,1]
B、[0,1]
C、(-∞,0]∪([1,+∞)
D、(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

方程ax2+by2=1表示双曲线的必要不充分条件是(  )
A、a<0且b>0
B、a>0且b<0
C、ab<5
D、ab>0

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2sin(ωx+φ),(ω>0,-
π
2
<φ<
π
2
)的部分图象如图所示,为了得到这个函数的图象,只要将y=2sinx的图象上所有的点(  )
A、向右平移
π
3
个单位长度,再把所得各点的横坐标缩短到原来的
1
2
倍,纵坐标不变
B、向右平移
π
3
个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
C、向右平移
π
6
个单位长度,再把所得各点的横坐标缩短到原来的
1
2
倍,纵坐标不变
D、向右平移
π
6
个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足(-1+i)z=2,则下面四个命题中真命题的为(  )
p1:|z|=2
p2:z2是纯虚数
p3:z的共轭复数为1+i
p4:z的虚部为-1.
A、p1,p2
B、p2,p3
C、p3,p4
D、p2,p4

查看答案和解析>>

科目:高中数学 来源: 题型:

有如下四个命题:
①命题“若x2-3x+2=0,则x=1“的逆否命题为“若x≠1,则x2-3x+2≠0”.
②若x=y=0,则x2+y2=0的逆命题是真命题.
③若p∧q为假命题,则p,q均为假命题.
④命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”.
其中错误命题的个数是(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程:(x-2)2+y2=16,点A(4,2),过点A作一条直线与圆C交于M、N两点,求MN中点的轨迹方程.

查看答案和解析>>

同步练习册答案