º¯Êýf£¨x£©=2sin£¨¦Øx+¦Õ£©£¬£¨¦Ø£¾0£¬-
¦Ð
2
£¼¦Õ£¼
¦Ð
2
£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬ÎªÁ˵õ½Õâ¸öº¯ÊýµÄͼÏó£¬Ö»Òª½«y=2sinxµÄͼÏóÉÏËùÓеĵ㣨¡¡¡¡£©
A¡¢ÏòÓÒÆ½ÒÆ
¦Ð
3
¸öµ¥Î»³¤¶È£¬ÔÙ°ÑËùµÃ¸÷µãµÄºá×ø±êËõ¶Ìµ½Ô­À´µÄ
1
2
±¶£¬×Ý×ø±ê²»±ä
B¡¢ÏòÓÒÆ½ÒÆ
¦Ð
3
¸öµ¥Î»³¤¶È£¬ÔÙ°ÑËùµÃ¸÷µãµÄºá×ø±êÉ쳤µ½Ô­À´µÄ2±¶£¬×Ý×ø±ê²»±ä
C¡¢ÏòÓÒÆ½ÒÆ
¦Ð
6
¸öµ¥Î»³¤¶È£¬ÔÙ°ÑËùµÃ¸÷µãµÄºá×ø±êËõ¶Ìµ½Ô­À´µÄ
1
2
±¶£¬×Ý×ø±ê²»±ä
D¡¢ÏòÓÒÆ½ÒÆ
¦Ð
6
¸öµ¥Î»³¤¶È£¬ÔÙ°ÑËùµÃ¸÷µãµÄºá×ø±êÉ쳤µ½Ô­À´µÄ2±¶£¬×Ý×ø±ê²»±ä
¿¼µã£ºº¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»
רÌ⣺Èý½Çº¯ÊýµÄͼÏñÓëÐÔÖÊ
·ÖÎö£ºÓɺ¯ÊýµÄÖÜÆÚÇó³ö¦Ø£¬ÔÙ¸ù¾ÝÎåµã·¨×÷ͼÇóµÃ¦Õ£¬´Ó¶øÇóµÃf£¨x£©µÄ½âÎöʽ£¬ÔÙ¸ù¾Ýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬µÃ³ö½áÂÛ£®
½â´ð£º ½â£ºÓɺ¯ÊýµÄͼÏó¿ÉµÃ
1
4
•T
=
1
4
2¦Ð
¦Ø
=
5¦Ð
12
-
¦Ð
6
=
¦Ð
4
£¬
¡àT=¦Ð£¬
¡à¦Ø=
2¦Ð
T
=2£®
ÔÙ¸ù¾ÝÎåµã·¨×÷ͼ¿ÉµÃ2¡Á
¦Ð
6
+¦Õ=0£¬½âµÃ¦Õ=-
¦Ð
3
£¬
¡àº¯Êýf£¨x£©=2sin£¨2x-
¦Ð
3
£©£¬
¹Ê½«y=2sinxµÄͼÏóÉÏËùÓеĵãÏòÓÒÆ½ÒÆ
¦Ð
3
¸öµ¥Î»³¤¶È£¬ÔÙ°ÑËùµÃ¸÷µãµÄºá×ø±êËõ¶Ìµ½Ô­À´µÄ
1
2
±¶£¬
×Ý×ø±ê²»±ä£¬¼´¿ÉµÃµ½ º¯Êýf£¨x£©=2sin£¨2x-
¦Ð
3
£©µÄͼÏó£¬
¹ÊÑ¡£ºA£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬Óɺ¯Êýy=Asin£¨¦Øx+¦Õ£©µÄ²¿·ÖͼÏóÇó½âÎöʽ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=eax-x-1£¬ÆäÖÐa¡Ù0£®Èô¶ÔÒ»ÇÐx¡ÊR£¬f£¨x£©¡Ý0ºã³ÉÁ¢£¬ÔòaµÄȡֵ¼¯ºÏ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

CÊÇÒÔÔ­µãOΪÖÐÐÄ£¬½¹µãÔÚyÖáÉϵĵÈÖáË«ÇúÏßÔÚµÚÒ»ÏóÏÞ²¿·Ö£¬ÇúÏßCÔÚµãP´¦µÄÇÐÏ߷ֱ𽻸ÃË«ÇúÏßµÄÁ½Ìõ½¥½üÏßÓÚA£¬BÁ½µã£¬Ôò£¨¡¡¡¡£©
A¡¢|OP|£¼
1
2
|AB|
B¡¢|OP|=|AB|
C¡¢
1
2
|AB|£¼|OP|£¼|AB|
D¡¢|OP|=
1
2
|AB|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÖÐÐÄÔÚ×ø±êÔ­µã£¬½¹µãÔÚyÖáÉϵÄË«ÇúÏߵĽ¥½üÏß·½³ÌΪy=¡À
1
2
x£¬Ôò´ËË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A¡¢5
B¡¢
5
2
C¡¢
5
2
D¡¢
5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

È«¼¯U={a£¬b£¬c£¬d£¬e}£¬M={a£¬d}£¬N={a£¬c£¬e}£¬ÔòN¡É∁UMΪ£¨¡¡¡¡£©
A¡¢{c£¬e}
B¡¢{a£¬c}
C¡¢{d£¬e}
D¡¢{a£¬e}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèl£¬mΪÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦ÁΪһ¸öÆ½Ãæ£¬ÏÂÁÐÃüÌâÖÐÕýÈ·µÄÃüÌâÊÇ£¨¡¡¡¡£©
¢ÙÈôl¡Î¦Á£¬m?¦Á£¬Ôòl¡Îm£» 
¢ÚÈôl£¬m?¦Á£¬ÇÒl¡Îm£¬Èôl¡Î¦Á£¬Ôòm¡Î¦Á£»
¢ÛÈôl¡Í¦Á£¬m¡Í¦Á£¬Ôòl¡Îm£»   
¢ÜÈôl¡Ím£¬m¡Í¦Á£¬Ôòl¡Î¦Á£®
A¡¢¢Ú¢ÛB¡¢¢Ú¢Ü
C¡¢¢Ù¢Ú¢ÛD¡¢¢Ú¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÒ»¸öÈýÀâ×¶µÄÈýÊÓͼÈçͼËùʾ£¬ÆäÖи©ÊÓͼÊǵÈÑüÈý½ÇÐΣ¬Ôò¸ÃÈýÀâ×¶µÄÌå»ýΪ£¨¡¡¡¡£©
A¡¢
3
3
B¡¢
2
3
3
C¡¢
3
D¡¢2
3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª
a
=£¨1£¬-1£©£¬
b
=£¨¦Ë£¬1£©£¬
a
Óë
b
µÄ¼Ð½ÇΪ¶Û½Ç£¬Ôò¦ËµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢¦Ë£¾1
B¡¢¦Ë£¼1
C¡¢¦Ë£¼-1
D¡¢¦Ë£¼-1»ò-1£¼¦Ë£¼1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªA£¬B£¬CÊÇÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©Éϲ»Í¬µÄÈýµã£¬A£¨3
2
£¬
3
2
2
£©£¬B£¨-3£¬-3£©£¬CÔÚµÚÈýÏóÏÞ£¬Ïß¶ÎBCµÄÖеãÔÚÖ±ÏßOAÉÏ£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÇóµãCµÄ×ø±ê£»
£¨3£©É趯µãPÔÚÍÖÔ²ÉÏ£¨ÒìÓÚµãA£¬B£¬C£©ÇÒÖ±ÏßPB£¬PC·Ö±ð½»Ö±ÏßOAÓÚM£¬NÁ½µã£¬Ö¤Ã÷
OM
ON
Ϊ¶¨Öµ²¢Çó³ö¸Ã¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸