精英家教网 > 高中数学 > 题目详情
已知一个三棱锥的三视图如图所示,其中俯视图是等腰三角形,则该三棱锥的体积为(  )
A、
3
3
B、
2
3
3
C、
3
D、2
3
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:几何体为三棱锥,且一条侧棱与底面垂直,高为2,其底面为等腰三角形,由三视图判断底面三角形的底边长与高,把数据代入棱柱的体积公式计算.
解答: 解:由三视图知:几何体为三棱锥,且一条侧棱与底面垂直,高为2,
三棱柱的底面为等腰三角形,且三角形的底边长为2
3
,底边上的高为1,
∴几何体的体积V=
1
3
×
1
2
×2
3
×1×2=
2
3
3

故选:B.
点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中,正确的是(  )
A、命题“若a<b,则am2<bm2”的逆命题是真命题
B、“p∧¬q为真命题”是“q为假命题”成立的充分不必要条件
C、命题“存在x∈R,x2-x>0”的否定是“对任意x∈R,x2-x<0”
D、已知x∈R,则“x>1”是“x>2”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合M={x|y=
x2-x3
},N={x|y=
2-(
1
2
)x
},则M∩N=(  )
A、[-1,1]
B、[0,1]
C、(-∞,0]∪([1,+∞)
D、(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2sin(ωx+φ),(ω>0,-
π
2
<φ<
π
2
)的部分图象如图所示,为了得到这个函数的图象,只要将y=2sinx的图象上所有的点(  )
A、向右平移
π
3
个单位长度,再把所得各点的横坐标缩短到原来的
1
2
倍,纵坐标不变
B、向右平移
π
3
个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
C、向右平移
π
6
个单位长度,再把所得各点的横坐标缩短到原来的
1
2
倍,纵坐标不变
D、向右平移
π
6
个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足(-1+i)z=2,则下面四个命题中真命题的为(  )
p1:|z|=2
p2:z2是纯虚数
p3:z的共轭复数为1+i
p4:z的虚部为-1.
A、p1,p2
B、p2,p3
C、p3,p4
D、p2,p4

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a1=7,a3=3,前n项和为Sn,则n=(  )时,Sn取到最大值.
A、4或5B、4C、3D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

有如下四个命题:
①命题“若x2-3x+2=0,则x=1“的逆否命题为“若x≠1,则x2-3x+2≠0”.
②若x=y=0,则x2+y2=0的逆命题是真命题.
③若p∧q为假命题,则p,q均为假命题.
④命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”.
其中错误命题的个数是(  )
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{1,2}⊆M⊆{1,2,3,4,5},求集合M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,请将m=
1
2
1
a
+
1
b
),n=
1
a+b
,p=
1
ab
这三个数从大到小排序.

查看答案和解析>>

同步练习册答案