精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD是底面边长为1的正方形,PDBC,PD=1,PC=.

(1)求证:PD⊥面ABCD
(2)求二面角A-PB-D的大小
60度

证:(1)由PD=CD=1,PC=可得

又因为
且CD与BC相交
所以
(2)建立如图坐标系(略)
A(1,0,0)   B(1,1,0)  C(0,1,0) D(0,0,0)   P(0,0,1)
由题意可知面APB和面PBD法向量分别为(1,0,1)和(-1,1,0)
 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图,在三棱锥中,侧面与侧面均为边长为1

的等边三角形,中点.
(Ⅰ)证明:平面
(Ⅱ)证明:
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本小题满分15分)
(文)已知直线与曲线相切,分别求的方程,使之满足:
(1)经过点;(2)经过点;(3)平行于直线
(理)如图,平面平面,四边形都是直角梯形,
分别为的中点
(Ⅰ)证明:四边形是平行四边形;
(Ⅱ)四点是否共面?为什么?
(Ⅲ)设,证明:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)

如图,四棱锥的底面为正方形,平面,且分别是线段的中点.
⑴求直线所成角的余弦值;
⑵求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱锥被平行于底面的平面所截,当截面分别平分侧棱,侧面积时所得截面相应面积分别为,则的大小关系为( )
A.B.C.D.无法判断

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
正三棱柱中,所有棱长均相等,分别是棱的中点,
截面将三棱柱截成几何体Ⅰ和几何体Ⅱ两个几何体.
①求几何体Ⅰ和几何体Ⅱ的表面积之比;
②求几何体Ⅰ和几何体Ⅱ的体积之比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,两个正方形所在平面互相垂直,设分别是的中点,那么① ;② ;③ ;④ 异面
其中正确结论的序号是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


已知ab是直线,是平面,给出下列命题:
①若a,则a
②若ab所成角相等,则ab
③若,则
④若aa,则
其中正确的命题的序号是_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

底面边长为1,高为3的正三棱柱的体积为                

查看答案和解析>>

同步练习册答案