精英家教网 > 高中数学 > 题目详情
19.若$\int_1^a$(2x+$\frac{1}{x}$)dx=3+ln2,则a的值是(  )
A.6B.4C.3D.2

分析 将等式左边计算定积分,然后解出a.

解答 解:因为$\int_1^a$(2x+$\frac{1}{x}$)dx=3+ln2,
所以(x2+lnx)|${\;}_{1}^{a}$=a2-1+lna=3+ln2,所以a=2;
故选D.

点评 本题考查了定积分的计算;关键是正确找出被积函数的原函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设a为实常数,对任意x∈[0,+∞),不等式(x+1)ln(x+1)≥ax恒成立,则a的取值范围是(  )
A.(-∞,-1]B.[-1,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.从2016年1月1日起,湖北、广东等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如下表:
上一年的出险次数012345次以上(含5次)
下一年保费倍率85%100%125%150%175%200%
连续两年没有出险打7折,连续三年没有出险打6折
经验表明新车商业车险保费与购车价格有较强的线性相关关系,下面是随机采集的8组数据(x,y)(其中x(万元)表示购车价格,y(元)表示商业车险保费):(8,2150)、(11,2400)、(18,3140)、(25,3750)、(25,4000)、(31,4560)、(37,5500)、(45,6500),设由这8组数据得到的回归直线方程为:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+1055
(Ⅰ)求b;
(Ⅱ)有评估机构从以往购买了车险的车辆中随机抽取1000 辆调查,得到一年中出险次数的频数分布如下(并用相应频率估计车辆2016 年度出险次数的概率):
一年中出险次数012345次以上(含5次)
频数5003801001541
湖北的李先生于2016 年1月购买了一辆价值20 万元的新车.根据以上信息,试估计该车辆在2017 年1月续保时应缴交的保费(精确到元),并分析车险新政是否总体上减轻了车主负担.(假设车辆下一年与上一年都购买相同的商业车险产品进行续保).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=3,∠BAC=60°,则|$\overrightarrow{BC}$|=(  )
A.1B.$\sqrt{7}$C.3D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.接正方体6个面的中心形成15条直线,从这15条直线中任取两条,则它们异面的概率为(  )
A.$\frac{2}{35}$B.$\frac{8}{35}$C.$\frac{12}{35}$D.$\frac{18}{35}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.无穷等比数列{an}中,“a1>a2”是“数列{an}为递减数列”的(  )
A.充分而不必要条件B.充分必要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.矩形ABCD满足AB=2,AD=1,点A、B分别在射线OM,ON上运动,∠MON为直角,当C到点O的距离最大时,∠ABO的大小为$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=$\sqrt{2}$,AF=1,M是线段EF的中点.
(1)求证:AM∥平面BDE;
(2)求二面角A-DF-B的大小;
(3)试在线段AC上一点P,使得PF与BC所成的角是60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2sin(x-$\frac{π}{3}$)cosx+sinx(cosx+$\sqrt{3}$sinx),x∈R.
(Ⅰ)若α∈(-$\frac{π}{2}$,0),且cosα=$\frac{1}{3}$,求f($\frac{α}{2}$)的值;
(Ⅱ)已知△ABC的角A,B,C的对边分别为a,b,c,若f(A)=$\sqrt{3}$,a=4,求△ABC的面积S的取值范围.

查看答案和解析>>

同步练习册答案