精英家教网 > 高中数学 > 题目详情

设函数.
(1)求的单调区间和极值;
(2)若,当时,在区间内存在极值,求整数的值.

(1)详见解析;(2).

解析试题分析:(1)此问为导数的基础题型,先求,令,求极值点,然后解,列出的变化表格,从而很容易确定单调区间,以及极值;
(2)代入得到,先求,从无法确定函数的极值点,所以求其二阶导数,令,   ,当时,恒成立,为单调递减函数,那么的值为极值点,因为是正整数,所以从开始判定符号,,,即为极值点的区间.
(1),解得
根据的变化情况列出表格:


(0,1)
1


+
0
_

递增
极大值
递减
 
由上表可知函数的单调增区间为(0,1),递减区间为
处取得极大值,无极小值..            5分
(2),,
,   
因为恒成立,所以为单调递减函数,
因为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3+x-16.
(1)求曲线y=f(x)在点(2,-6)处的切线的方程;
(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;
(3)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知).
(1)若时,求函数在点处的切线方程;
(2)若函数上是减函数,求实数的取值范围;
(3)令是否存在实数,当是自然对数的底)时,函数的最小值是.若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,.
(1)讨论内和在内的零点情况.
(2)设内的一个零点,求上的最值.
(3)证明对恒有.[来

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•重庆)设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=﹣对称,且f′(1)=0
(Ⅰ)求实数a,b的值
(Ⅱ)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.
(1)求函数的单调区间;
(2)求证:对于任意的,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 ().
(1)若,求函数的极值;
(2)设
① 当时,对任意,都有成立,求的最大值;
② 设的导函数.若存在,使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若,求函数的极值;
(2)当时,试确定函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中e为自然对数的底数.
(1)若是增函数,求实数的取值范围;
(2)当时,求函数上的最小值;
(3)求证:.

查看答案和解析>>

同步练习册答案