精英家教网 > 高中数学 > 题目详情

已知,其中e为自然对数的底数.
(1)若是增函数,求实数的取值范围;
(2)当时,求函数上的最小值;
(3)求证:.

(1)实数的取值范围是.
(2)当时,
时,
时,.
(3)见解析.

解析试题分析:(1)由题意知上恒成立.
根据,知上恒成立,即上恒成立. 只需求时,的最大值.
(2)当时,则.
根据分别得到的增区间为(2,+∞),减区间为(-∞,0),(0,2). 因为,所以
因此,要讨论①当,即时,②当,即时,③当时等三种情况下函数的最小值.
(3)由(2)可知,当时,,从而
可得
故利用



(1)由题意知上恒成立.
,则上恒成立,
上恒成立. 而当时,,所以
于是实数的取值范围是.                     4分
(2)当时,则.
,即时,
,即时,.
的增区间为(2,+∞),减区间为(-∞,0),(0,2).   6分
因为,所以
①当,即时,在[]上单调递减,
所以
②当,即时,上单调递减,
上单调递增,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.
(1)求的单调区间和极值;
(2)若,当时,在区间内存在极值,求整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

水库的蓄水量随时间而变化,现用表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于的近似函数关系式为

(1)该水库的蓄求量小于50的时期称为枯水期.以表示第1月份(),同一年内哪几个月份是枯水期?
(2)求一年内该水库的最大蓄水量(取计算).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln x-
(1)当a>0时,判断f(x)在定义域上的单调性;
(2)f(x)在[1,e]上的最小值为,求实数a的值;
(3)试求实数a的取值范围,使得在区间(1,+∞)上函数y=x2的图象恒在函数y=f(x)图象的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数
(1)求函数的极大值和极小值
(2)直线与函数的图像有三个交点,求的范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ex-ax-2.
(1)求f(x)的单调区间;
(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求f(x)的反函数的图象上图象上,点(1,0)处的切线方程;
(2)证明: 曲线y =" f" (x)与曲线有唯一公共点.
(3)设a<b, 比较的大小, 并说明理由.   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1) 当时,求曲线在点处的切线方程;
(2) 求函数的单调区间及在上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时取得极小值.
(1)求实数的值;
(2)是否存在区间,使得在该区间上的值域为?若存在,求出的值;
若不存在,说明理由.

查看答案和解析>>

同步练习册答案