已知函数f(x)=ln x-.
(1)当a>0时,判断f(x)在定义域上的单调性;
(2)f(x)在[1,e]上的最小值为,求实数a的值;
(3)试求实数a的取值范围,使得在区间(1,+∞)上函数y=x2的图象恒在函数y=f(x)图象的上方.
科目:高中数学 来源: 题型:解答题
已知的导函数的简图,它与轴的交点是(0,0)和(1,0),
又
(1)求的解析式及的极大值.
(2)若在区间(m>0)上恒有≤x成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知A、B、C是直线l上不同的三点,O是l外一点,向量满足:记y=f(x).
(1)求函数y=f(x)的解析式:
(2)若对任意不等式恒成立,求实数a的取值范围:
(3)若关于x的方程f(x)=2x+b在(0,1]上恰有两个不同的实根,求实数b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com