精英家教网 > 高中数学 > 题目详情

水库的蓄水量随时间而变化,现用表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于的近似函数关系式为

(1)该水库的蓄求量小于50的时期称为枯水期.以表示第1月份(),同一年内哪几个月份是枯水期?
(2)求一年内该水库的最大蓄水量(取计算).

(1)枯水期为1月,2月,3月,4月,11月,12月共6个月; (2)一年内该水库的最大蓄水量是108.32亿立方米.

解析试题分析:(1)对分段函数分别在两个范围内解小于50的不等式,可求得的范围,且取整可得;(2)由(1)知,的最大值只能在(4,10)内内达到,对求导,,,求得在(4,10)的极大值即为最值.
解:(1)①当时
化简得,解得.   2分
②当时,,化简得,
解得.综上得,,或
故知枯水期为1月,2月,3月,4月,11月,12月共6个月.  4分
(2)由(1)知,的最大值只能在(4,10)内内达到.
,  6分
,解得舍去).
变化时,的变化情况如下表:


(4,8)
8
(8,10)

+
0
-

增函数
极大值
减函数
  10分
由上表,时取得最大值(亿立方米).  11分
故知一年内该水库的最大蓄水量是108.32亿立方米.  12分
考点:导数的应用,函数的极值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知).
(1)若时,求函数在点处的切线方程;
(2)若函数上是减函数,求实数的取值范围;
(3)令是否存在实数,当是自然对数的底)时,函数的最小值是.若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 ().
(1)若,求函数的极值;
(2)设
① 当时,对任意,都有成立,求的最大值;
② 设的导函数.若存在,使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若,求函数的极值;
(2)当时,试确定函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,求函数上的最大值和最小值;
(2)若上为增函数,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的导函数的简图,它与轴的交点是(0,0)和(1,0),


(1)求的解析式及的极大值.
(2)若在区间(m>0)上恒有≤x成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)若求函数的极值点及相应的极值;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,其中e为自然对数的底数.
(1)若是增函数,求实数的取值范围;
(2)当时,求函数上的最小值;
(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求函数的极小值;
(2)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?

查看答案和解析>>

同步练习册答案