精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=x3-2x2+x+5,若f′(x0)=0,求x0的值.

分析 利用导数的运算法则可得f′(x),令f′(x0)=0,解出即可.

解答 解:∵f(x)=x3-2x2+x+5,
∴f′(x)=3x2-4x+1,
∵f′(x0)=0,
∴$3{x}_{0}^{2}-4{x}_{0}$+1=0,
解得x0=1或$\frac{1}{3}$.
∴x0=1或$\frac{1}{3}$.

点评 本题考查了导数的运算法则、一元二次方程的解法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若方程(2m-1)x+(2m2+m-1)y+m=0表示一条直线,则m的取值范围是$(-∞,\frac{1}{2})$∪$(\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足:a1=2,an=an-1+2n(n≥2)
(1)求数列{an}的通项an
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.把6位同学平均分成3组,每组2人,则共有多少种不同分组法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知正△ABC边长为1,P在内部(不含边界)任意点,设$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),则在坐标系中点(x,y)对应区域面积为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2-blnx在点(1,f(1))处的切线方程为y=3x-1.
(1)若f(x)在其定义域内的一个子区间(k-1,k+1)内不是单调函数,求实数k的取值范围;
(2)若对任意x∈[0,+∞),均存在t∈[1,3],使得$\frac{1}{3}$t3-$\frac{c+1}{2}$t2+ct+ln2+$\frac{1}{6}$≤f(x),试求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\frac{1}{2}$,F(1,0),是椭圆C的右焦点,若不经过原点O的直线l:y=kx+m(k>0)与椭圆C相交于不同的两点A、B,记直线OA,OB的斜率分别为k1,k2,且k1•k2=k2
(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:直线AB的斜率为定值,并求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥平面ABCD.点E是线段BD的中点,点F是线段PD上的动点.
(Ⅰ)若F是PD的中点,求证:EF∥平面PBC;
(Ⅱ)求证:CE⊥BF;
(Ⅲ)若AB=2,PD=3,当三棱锥P-BCF的体积等于$\frac{4}{3}$时,试判断点F在边PD上的位置,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若x$>\frac{1}{2}$,则f(x)=$\frac{12}{x}$+ax的最小值为a≤0或者a≥48时,没有最小值;0<a<48时最小值为4$\sqrt{3a}$.

查看答案和解析>>

同步练习册答案