9£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe=$\frac{1}{2}$£¬F£¨1£¬0£©£¬ÊÇÍÖÔ²CµÄÓÒ½¹µã£¬Èô²»¾­¹ýÔ­µãOµÄÖ±Ïßl£ºy=kx+m£¨k£¾0£©ÓëÍÖÔ²CÏཻÓÚ²»Í¬µÄÁ½µãA¡¢B£¬¼ÇÖ±ÏßOA£¬OBµÄбÂÊ·Ö±ðΪk1£¬k2£¬ÇÒk1•k2=k2£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÇóÖ¤£ºÖ±ÏßABµÄбÂÊΪ¶¨Öµ£¬²¢Çó¡÷AOBÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©ÓÉÌõ¼þÀûÓÃÍÖÔ²µÄÐÔÖÊÇó³öa¡¢bµÄÖµ£¬¿ÉµÃÍÖÔ²CµÄ·½³Ì£®
£¨¢ò£©°ÑÖ±Ïßl£ºy=kx+m£¨k£¾0£©´úÈëÍÖÔ²µÄ·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢ÏÒ³¤¹«Ê½Çó³öS¡÷AOB=$\frac{1}{2}$•AB•d=$\frac{1}{2}$•$\sqrt{\frac{4£¨6{-m}^{2}£©{•m}^{2}}{3}}$¡Ü$\sqrt{3}$£¬´Ó¶øÖ¤µÃ½áÂÛ£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃe=$\frac{c}{a}$=$\frac{1}{2}$£¬c=1£¬¡àa=2£¬b=$\sqrt{3}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£®
£¨¢ò£©Ö¤Ã÷£ºÉèµãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬°ÑÖ±Ïßl£ºy=kx+m£¨k£¾0£©´úÈëÍÖÔ² $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£¬
¿ÉµÃ £¨4k2+3£©x2+8kmx+4m2-12=0£®
ÓÉ¡÷=48£¨3-m2+4k2£©£¾0£¬x1+x2=-$\frac{8km}{{4k}^{2}+3}$£¬x1•x2=$\frac{{4m}^{2}-12}{{4k}^{2}+3}$£®
ÓÉk1•k2=$\frac{£¨{kx}_{1}+m£©•£¨{kx}_{2}+m£©}{{x}_{1}{•x}_{2}}$=k2+$\frac{km{£¨x}_{1}{+x}_{2}£©{+m}^{2}}{{x}_{1}{•x}_{2}}$=k2£®
¿ÉµÃkm£¨x1•x2 £©+m2=0£¬¼´ km•£¨-$\frac{8km}{{4k}^{2}+3}$ £©+m2=0£¬¼´ 3m2=4k2•m2£¬¡àk=$\frac{\sqrt{3}}{2}$£¬Îª¶¨Öµ£®
ÓÉÓÚAB=$\sqrt{{1+k}^{2}}$|x1-x2|=$\frac{\sqrt{7}}{2}$•$\sqrt{\frac{24-{4m}^{2}}{3}}$£¬µãOµ½Ö±ÏßABµÄ¾àÀëd=$\frac{|m|}{\sqrt{{1+k}^{2}}}$=$\frac{2|m|}{\sqrt{7}}$£¬
¹ÊS¡÷AOB=$\frac{1}{2}$•AB•d=$\frac{1}{2}$•$\sqrt{\frac{4£¨6{-m}^{2}£©{•m}^{2}}{3}}$¡Ü$\sqrt{3}$£¬¡à¡÷AOBÃæ»ýµÄ×î´óֵΪ$\sqrt{3}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÍÖÔ²µÄ¶¨Òå¡¢±ê×¼·½³Ì£¬ÒÔ¼°¼òµ¥ÐÔÖʵÄÓ¦Ó㬵㵽ֱÏߵľàÀ빫ʽ¡¢ÏÒ³¤¹«Ê½µÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®»¯¼ò£ºsin4¦Á-cos4¦Á+cos2¦Á

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔÚ¡÷ABCÖУ¬ÈôcosAcosBcosC£¼0£¬Ôò¡÷ABCÊÇ£¨¡¡¡¡£©
A£®Èñ½ÇÈý½ÇÐÎB£®Ö±½ÇÈý½ÇÐÎ
C£®¶Û½ÇÈý½ÇÐÎD£®Èñ½Ç»ò¶Û½ÇÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®É躯Êýf£¨x£©=x3-2x2+x+5£¬Èôf¡ä£¨x0£©=0£¬Çóx0µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚ¿Õ¼äÖ±½Ç×ø±êϵOxyzÖУ¬ÒÑÖªA£¨2£¬0£¬0£©£¬B£¨2£¬2£¬0£©£¬D£¨0£¬0£¬2£©£¬E£¨0£¬2£¬1£©£®
£¨¢ñ£©ÇóÖ¤£ºÖ±ÏßBE¡ÎÆ½ÃæADO£»
£¨¢ò£©ÇóÖ±ÏßOBºÍÆ½ÃæABDËù³ÉµÄ½Ç£»
£¨¢ó£©ÔÚÖ±ÏßBEÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÖ±ÏßAPÓëÖ±ÏßBD´¹Ö±£¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÔÚÌÝÐÎABCDÖУ¬AD¡ÎBC£¬ADCD£¬AD=2BC=2CD=2£¬M£¬N£¬E·Ö±ðΪ£¬AB£¬CD£¬ADµÄÖе㣬½«¡÷ABEÑØBEÕÛÆð£¬Ê¹ÕÛµþºóAD=1
£¨1£©ÇóÖ¤£ºÕÛµþºóMN¡ÎÆ½ÃæAED£»
£¨2£©ÇóÕÛµþºóËÄÀâ×¶A-BCDEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚ³¤·½ÌåABCD-A1B1C1D1ÖУ¬AB=2BC=2BB1£¬ÑØÆ½ÃæC1BD°ÑÕâ¸ö³¤·½Ì彨³ÉÁ½¸ö¼¸ºÎÌ壺¼¸ºÎÌ壨1£©£»¼¸ºÎÌ壨2£©

£¨ I£©É輸ºÎÌ壨1£©¡¢¼¸ºÎÌ壨2£©µÄÌå»ý·ÖΪÊÇV1¡¢V2£¬ÇóV1ÓëV2µÄ±ÈÖµ
£¨ II£©ÔÚ¼¸ºÎÌ壨2£©ÖУ¬Çó¶þÃæ½ÇP-QR-CµÄÕýÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªµãP1£¨2£¬1£©£¬µãP2£¨-1£¬3£©£¬µãPÔÚÏß¶ÎP1P2ÉÏ£¬ÇÒ|$\overrightarrow{{P}_{1}P}$|=$\frac{2}{3}$|$\overrightarrow{P{P}_{2}}$|£¬ÇóµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªÖ±Ïßy=xÓëÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö½»µãΪP£¬ÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÇÒ$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0£¬ÍÖÔ²µÄÀëÐÄÂÊΪe£¬Ôòe2=£¨¡¡¡¡£©
A£®$\frac{\sqrt{2}}{2}$B£®$\frac{1}{4}$C£®$\frac{2-\sqrt{2}}{2}$D£®2-$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸