精英家教网 > 高中数学 > 题目详情
椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在点P,使得c•PF2=a•PF1则该椭圆离心率的取值范围是
 
分析:由椭圆的定义可得 e(x+
a2
c
)=e•e(
a2
c
-x),解得x=
c-a
e(e+1)
,由题意可得-a≤
c-a
e(e+1)
≤a,解不等式求得离心率e的取值范围.
解答:解:设点P的横坐标为x,∵c•PF2=a•PF1 即|PF1|=e|PF2|,则由椭圆的定义可得 e(x+
a2
c
)=e•e(
a2
c
-x),
∴x=
c-a
e(e+1)
,由题意可得-a≤
c-a
e(e+1)
≤a,∴-1≤
e-1
e(e+1)
≤1,
e-1 ≥-e2- e
e-1 ≤e2+ e
,∴
2
-1≤e<1,则该椭圆的离心率e的取值范围是[
2
-1
,1),
故答案为:[
2
-1
,1).
点评:本题考查椭圆的定义,以及简单性质的应用,由椭圆的定义可得 e(x+
a2
c
)=e•e(
a2
c
-x),是解题的关键..
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,求证:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF1的中点,求证:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中数学 来源: 题型:

设 A(x1,y1)、B(x2,y2)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的两点,O为坐标原点,向量
m
=(
x1
a
y1
b
),
n
=(
x2
a
y2
b
)
m
n
=0

(1)若A点坐标为(a,0),求点B的坐标;
(2)设
OM
=cosθ•
OA
+sinθ•
OB
,证明点M在椭圆上;
(3)若点P、Q为椭圆 上的两点,且
PQ
OB
,试问:线段PQ能否被直线OA平分?若能平分,请加以证明;若不能平分,请说明理由.

查看答案和解析>>

科目:高中数学 来源:四川 题型:解答题

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

同步练习册答案