【题目】某租车公司给出的财务报表如下:
年度 项目 | 2014年 (1-12月) | 2015年 (1-12月) | 2016年 (1-11月) |
接单量(单) | 14463272 | 40125125 | 60331996 |
油费(元) | 214301962 | 581305364 | 653214963 |
平均每单油费 | 14.82 | 14.49 | |
平均每单里程 | 15 | 15 | |
每公里油耗 | 0.7 | 0.7 | 0.7 |
有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为
.
(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);
(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里).
科目:高中数学 来源: 题型:
【题目】下列结论中正确的个数是( ).
①在
中,若
,则
是等腰三角形;
②在
中,若
,则![]()
③两个向量
,
共线的充要条件是存在实数
,使![]()
④等差数列的前
项和公式是常数项为0的二次函数.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
(
为参数),将曲线
上的所有点的横坐标保持不变,纵坐标缩短为原来的
后得到曲线
;以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求曲线
和直线
的直角坐标方程;
(2)已知
,设直线
与曲线
交于不同的
、
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,实数
满足
;
(1)当函数
的定义域为
时,求
的值域;
(2)求函数关系式
,并求函数
的定义域
;
(3)在(2)的结论中,对任意
,都存在
,使得
成立,求实数
的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
.经过点
且倾斜角为
的直线
与椭圆
交于
、
两点(其中点
在
轴上方),
的周长为8.
(1)求椭圆
的标准方程;
(2)如图,把平面
沿
轴折起来,使
轴正半轴和
轴确定的半平面,与
负半轴和
轴所确定的半平面互相垂直.
![]()
①若
,求异面直线
和
所成角的大小;
②若折叠后
的周长为
,求
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为正方形,
底面
,
,
为线段
的中点,
为线段
上的动点.
![]()
(1)平面
与平面
是否互相垂直?如果垂直,请证明;如果不垂直,请说明理由.
(2)若
,
为线段
的三等分点,求多面体
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
分别是双曲线
的左、右焦点,过
斜率为
的直线
交双曲线的左、右两支分别于
两点,过
且与
垂直的直线
交双曲线的左、右两支分别于
两点.
(1)求
的取值范围;
(2)求四边形
面积的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求函数
的定义域D,并判断
的奇偶性;
(2)如果当
时,
的值域是
,求a的值;
(3)对任意的m,
,是否存在
,使得
,若存在,求出t,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com