精英家教网 > 高中数学 > 题目详情

【题目】的对边分别为为锐角,问:(1)证明: B - A = ,(2)求 sin A + sin C 的取值范围
(1)(1)证明:
(2)(2)求的取值范围

【答案】
(1)

证明:由 a = b tan A , 及正弦定理,得 sin A /cos A = a /b = sin A/ sin B 所以 sin B = sin (π /2 + A), 又 B 为锐角.因此 π /2 + A ∈( π/ 2 , π ),故 B = π /2 + A 即 B - A = π /2.


(2)


【解析】(1)由及正弦定理,得所以为锐角.因此 , 故
(2)由(1)知,所以 , 于是=因为所以,由此可知的取值范围是
【考点精析】根据题目的已知条件,利用正弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·湖北)已知数列的各项均为正数,为自然对数的底数.
(1)求函数的单调区间,并比较的大小;
(2)计算 , 由此推测计算的公式,并给出证明;
(3)令 , 数列的前项和分别记为,, 证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是递增的等比数列,a1+a4=9,a2a3=8,则数列的前n项和等于,解得a1=1,a4=8,或者a1=8,a4=1,但由于是递增数列,即a1=1,a4=8,即q3==8,所以q=2.因而数列的前n项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的解析式;

2)求的值域,设为实数),求时的最大值

3)对(2)中,若的所有实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点和点都在椭圆上,直线交x轴于点M.
(1)(Ⅰ)求椭圆C的方程,并求点M的坐标(用表示);
(2)(Ⅱ)设为原点,点与点关于轴对称,直线交X轴于点N.问:Y轴上是否存在点Q,使得?若存在,求点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=3an+1.
(1)证明{an+ }是等比数列,并求{an}的通项公式;
(2)证明: + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,则输出S的值为(
A. ﹣67
B. ﹣67
C. ﹣68
D. ﹣68

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项均为非负整数的数列{an}同时满足下列条件: ①a1=m(m∈N*);②an≤n﹣1(n≥2);③n是a1+a2+…+an的因数(n≥1).
(Ⅰ)当m=5时,写出数列{an}的前五项;
(Ⅱ)若数列{an}的前三项互不相等,且n≥3时,an为常数,求m的值;
(Ⅲ)求证:对任意正整数m,存在正整数M,使得n≥M时,an为常数.

查看答案和解析>>

同步练习册答案