解:(1)当a=1时,

因为f(x)在(-∞,0)上递减,所以f(x)>f(0)=3,
即f(x)在(-∞,1)的值域为(3,+∞)故不存在常数M>0,使|f(x)|≤M成立
所以函数f(x)在(-∞,1)上不是有界函数.(4分)
(2)由题意知,|f(x)|≤3在[1,+∞)上恒成立.(5分)
-3≤f(x)≤3,

∴

在[0,+∞)上恒成立(6)
∴

(7分)
设2
x=t,

,

,由x∈[0,+∞)得t≥1,
设1≤t
1<t
2,


所以h(t)在[1,+∞)上递减,p(t)在[1,+∞)上递增,(9分)
h(t)在[1,+∞)上的最大值为h(1)=-5,p(t)在[1,+∞)上的最小值为p(1)=1
所以实数a的取值范围为[-5,1].(10分)
(3)

,
∵m>0,x∈[0,1]
∴g(x)在[0,1]上递减,(12分)
∴g(1)≤g(x)≤g(0)即

(13分)
①当

,即

时,

,(12分)
此时

,(14分)
②当

,即

时,

,
此时

,
综上所述,当

时,T(m)的取值范围是

;
当

时,T(m)的取值范围是[

,+∞)(16分)
分析:(1)当a=1时,易知f(x)在(-∞,0)上递减,有f(x)>f(0)=3,再有给出的定义判断;
(2)由函数f(x)在[0,+∞)上是以3为上界的有界函数,结合定义则有|f(x)|≤3在[0,+∞)上恒成立,再转化为

在[0,+∞)上恒成立

即可;
(3)据题意先研究函数g(x)在[0,1]上的单调性,确定函数g(x)的范围,即分别求的最大值和最小值,根据上界的定义,T(m)不小于最大值,从而解决.
点评:本题主要考查情境题的解法,在解决中要通过给出的条件转化为已有的知识和方法去解决,本题主要体现了定义法,恒成立和最值等问题,综合性强,要求学生在学习中要有恒心和毅力.