精英家教网 > 高中数学 > 题目详情
设抛物线y2=4x的一条弦AB以点P(1,1)为中点,则该弦所在直线斜率的值为
 
分析:设出A,B坐标,分别代入抛物线方程,两式相减整理,利用中点的纵坐标求得直线AB的斜率.
解答:解:设A(x1,y1),B(x2,y2
代入抛物线方程得y12=4x1,①,y22=4x2,②,
①-②整理得k=
y1-y2
x1-x2
=
4
y1+y2
=2
故答案为:2
点评:本题主要考查了直线与圆锥曲线的关系.涉及曲线弦的中点和斜率时,一般可采用点差法,设出交点的坐标代入曲线方程,相减后整理出直线斜率与中点坐标的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设抛物线y2=4x的焦点为F,过点M(-1,0)的直线在第一象限交抛物线于A、B,使
AF
BF
=0
,则直线AB的斜率k=(  )
A、
2
B、
2
2
C、
3
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=4x的焦点为F,过点F的直线与抛物线交于A,B两点,过AB的中点M作准线的垂线与抛物线交于点P,若|PF|=
3
2
,则弦长|AB|等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=4x的焦点为F,过点M(
1
2
,0)
的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比
S△BCF
S△ACF
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线 y2=4x的一条弦AB以P(
32
,1)
为中点,则该弦所在直线的斜率为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区一模)在平面直角坐标系xoy中,设抛物线y2=4x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的倾斜角为120°,那么|PF|=
4
4

查看答案和解析>>

同步练习册答案