精英家教网 > 高中数学 > 题目详情

在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F分别为AD,CD的中点.

(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.

(1);(2)

解析试题分析:(1)首先建立空间直角坐标系,列出各对应点坐标,表示对应向量坐标,(-2,2,a),(0,1,-a),再根据空间向量数量积定义,得到2-a2=0,从而求出a的值,(2)先判断二面角E-FD1-D为锐二面角,所以求二面角E-FD1-D的余弦值,就转化为求两个平面法向量夹角的余弦值的绝对值.又平面FD1D的一个法向量为,所以关键求平面EFD1的一个法向量n=(x,y,z),利用 n⊥,n⊥可求出x=y=2z,取其一个法向量为n=(2,2,1),再利用空间向量夹角公式,就可得到二面角E-FD1-D的余弦值.
试题解析:解 如图,以D为坐标原点,DA所在直线为x轴,

DC所在直线为y轴,DD1所在直线为z轴,建立坐标系.
(1)由题意得A(2,0,0),D1(0,0,a),C1(0,2,a),F(0,1,0).
 (-2,2,a), (0,1,-a).    2分
因为AC1⊥D1F,所以,即(-2,2,a)·(0,1,-a)=0.
从而2-a2=0,又a>0,故.                       5分
(2)平面FD1D的一个法向量为m=(1,0,0).  设平面EFD1的一个法向量为n=(x,y,z),
因为E(1,0,0),a=2,故=(-1,1,0),(0,1,-2).
由n⊥,n⊥,得-x+y=0且y-2z=0,解得x=y=2z.
故平面EFD1的一个法向量为n=(2,2,1).              8分
因为,且二面角E-FD1-D的大小为锐角,
所以二面角E-FD1-D的余弦值为.                   10分
考点:利用空间向量求二面角

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.

(1)证明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知的直径,点上两点,且为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).

(1)求证:
(2)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,

(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q—BP—C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面是等腰梯形,分别是的中点.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图甲,△ABC是边长为6的等边三角形,E,D分别为AB、AC靠近B、C的三等分点,点G为BC边的中点.线段AG交线段ED于F点,将△AED沿ED翻折,使平面AED⊥平面BCDE,连接AB、AC、AG形成如图乙所示的几何体。

(1)求证BC⊥平面AFG;
(2)求二面角B-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABCA1B1C1中,DE分别是ABBB1的中点,AA1ACCBAB.

(1)证明:BC1∥平面A1CD
(2)求二面角DA1CE的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三棱柱ABC-A1B1C1在如图所示的空间直角坐标系中,已知AB=2,AC=4,A1A=3.D是BC的中点.

(1)求直线DB1与平面A1C1D所成角的正弦值;
(2)求二面角B1-A1D-C1的正弦值.

查看答案和解析>>

同步练习册答案