分析 求出向量$\overrightarrow{a}$的模即向量$\overrightarrow{b}$的模,设出$\overrightarrow{b}$的坐标,根据两角差的正切公式求出tanβ,根据勾股定理求出$\overrightarrow{b}$的坐标即可.
解答 解:如图示:
,
由题意得:|$\overrightarrow{a}$|=$\sqrt{1+4}$=$\sqrt{5}$,
∵tanα=$\frac{2}{1}$=2,
∴tanβ=tan(α-$\frac{π}{4}$)=$\frac{tanα-tan\frac{π}{4}}{1+tanαtan\frac{π}{4}}$=$\frac{1}{3}$,
设$\overrightarrow{b}$=(x,y),
则$\left\{\begin{array}{l}{x=3y}\\{{x}^{2}{+y}^{2}=5}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{3\sqrt{2}}{2}}\\{y=\frac{\sqrt{2}}{2}}\end{array}\right.$,
故答案为:($\frac{3\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$).
点评 本题考查了向量的运算,考查两角差的正切公式,是一道基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 0 | C. | 4 | D. | -2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com