精英家教网 > 高中数学 > 题目详情
19.已知实数x、y满足约束条件$\left\{\begin{array}{l}x+y≤2\\ x≥0\\ y≥0\end{array}\right.$,则z=y-x的最大值为(  )
A.2B.0C.4D.-2

分析 作出不等式组表示的平面区域,将目标函数变形,作出直线,将直线平移,由图判断出直线过A时z最大,求出最大值.

解答 解:画出不等式组$\left\{\begin{array}{l}x+y≤2\\ x≥0\\ y≥0\end{array}\right.$,表示的平面区域:
将目标函数z=y-x变形为y=x+z,z为直线的纵截距,作直线y=x将其平移至点A直线的纵截距最大,z最大
∴z的最大值为2.
故选:A.

点评 利用线性规划求函数的最大值时,首先要画出可行域,关键是给目标函数赋予几何意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若将向量$\overrightarrow{a}$=(1,2)绕原点按顺时针方向旋转$\frac{π}{4}$得到向量$\overrightarrow{b}$,则$\overrightarrow{b}$的坐标是($\frac{3\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.解不等式:1-5x<6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点为F,直线l:3x-4y=0交椭圆E于A,B两点,若|AF|+|BF|=14,点F关于l对称点M在椭圆E上,则F坐标为(5,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$,若|$\overrightarrow{a}$|=$\sqrt{2}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=4,则|$\overrightarrow{b}$|=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知cosα=$\frac{{\sqrt{2}}}{2}$,α∈(0,$\frac{π}{2}$).
(1)求tanα的值;       
(2)求sin(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=ex的导函数是(  )
A.y′=xB.y′=e•xC.y′=exD.y′=x•ex-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数p(x)=log3x,q(x)=2x
(1)若f(q(x))=p(q(5x)),求f(x)的解析式及f(5-2013)+f(5-2012)+f(5-2011)+…+f(52012)+f(52013)值;
(2)若g(x)=p(q(2x)+1)+kx(k∈R)是偶函数,且方程g(x)-m=0有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.①若向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,则cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$;
②($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$$•\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$;
③若向量$\overrightarrow{AB}$的起点为A(-2,4),终点为B(2,1),则$\overrightarrow{BA}$与x轴正方向所夹角的余弦值是$\frac{4}{5}$;
④若向量$\overrightarrow{a}$=(m,4),且|$\overrightarrow{a}$|=$\sqrt{23}$,则m=$\sqrt{7}$
其中不正确的序号有③④.

查看答案和解析>>

同步练习册答案