精英家教网 > 高中数学 > 题目详情
14.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$,若|$\overrightarrow{a}$|=$\sqrt{2}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=4,则|$\overrightarrow{b}$|=4.

分析 由条件$<\overrightarrow{a},\overrightarrow{b}>=\frac{π}{4},|\overrightarrow{a}|=\sqrt{2}$,$\overrightarrow{a}•\overrightarrow{b}=4$带入向量数量积的计算公式便可得出$\sqrt{2}|\overrightarrow{b}|•\frac{\sqrt{2}}{2}=4$,这样便可得出$|\overrightarrow{b}|$的值.

解答 解:根据条件,$\overrightarrow{a}•\overrightarrow{b}=|\overrightarrow{a}||\overrightarrow{b}|cos\frac{π}{4}$=$\sqrt{2}|\overrightarrow{b}|•\frac{\sqrt{2}}{2}=4$;
∴$|\overrightarrow{b}|=4$.
故答案为:4.

点评 考查向量夹角的概念,以及向量数量积的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(3,0),则$\overrightarrow{a}$在$\overrightarrow{b}$方向上投影为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知(1+x)n的展开式中,第3项系数为21,则自然数n=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为4$\sqrt{3}$,且椭圆C过点(2$\sqrt{3}$,1).
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C与y轴负半轴的交点为B,如果直线y=kx+1(k≠0)交椭圆C于不同的两点E、F,且B,E,F构成以EF为底边,B为顶点的等腰三角形,判断直线EF与圆x2+y2=$\frac{1}{2}$的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在某学校一次考试的语文与历史成绩中,随机抽取了25位考生的成绩进行分析,25位考生的语文成绩已经统计在茎叶图中,历史成绩如下:
(Ⅰ)请根据数据在茎叶图中完成历史成绩统计;
(Ⅱ)请根据数据完成语文成绩的频数分布表及语文成绩的频率分布直方图;

语文成绩的频数分布表:
语文成绩分组[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)[110,120]
频数
(Ⅲ)设上述样本中第i位考生的语文、历史成绩分别为xi,yi(i=1,2,…,25).通过对样本数据进行初步处理发现:语文、历史成绩具有线性相关关系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}$xi=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85.
①求y关于x的线性回归方程;
②并据此预测,当某考生的语文成绩为100分时,该生历史成绩.(精确到0.1分)
附:回归直线方程的斜率和截距的最小二乘法估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-\overline{n}x•\overline{y}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数x、y满足约束条件$\left\{\begin{array}{l}x+y≤2\\ x≥0\\ y≥0\end{array}\right.$,则z=y-x的最大值为(  )
A.2B.0C.4D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设扇形的半径长为8cm,面积为32cm2,则扇形的圆心角的弧度数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知(x+1)(x-2)9=a0+a1(x-1)+a2(x-1)2+…+a10(x-1)10,则a8=(  )
A.18B.36C.135D.144

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.5866除以7的余数是(  )
A.3B.2C.1D.4

查看答案和解析>>

同步练习册答案