·ÖÎö £¨I£©ÓÉÌâ¿ÉÖªc=2$\sqrt{3}$£¬ÓÖa2-b2=c2£¬½«µã£¨2$\sqrt{3}$£¬1£©´úÈëÍÖÔ²·½³Ì£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨II£©Éè½»µãΪE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬EFµÄÖеãMµÄ×ø±êΪ£¨xM£¬yM£©£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬¿ÉµÃMµÄ×ø±ê£¬ÓÉÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬¿ÉµÃÖ±ÏßEFµÄ·½³Ì£¬ÔÙÇóÔ²Ðĵ½Ö±ÏߵľàÀ룬Óë°à¼¶±È½Ï£¬¼´¿ÉµÃµ½ËùÇóλÖùØÏµ£®
½â´ð ½â£º£¨I£©ÓÉÌâ¿ÉÖªc=2$\sqrt{3}$£¬a2-b2=c2£¬
½«µã£¨2$\sqrt{3}$£¬1£©´úÈëÍÖÔ²·½³Ì¿ÉµÃ$\frac{12}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1£¬½âµÃa=4£¬b=2£¬
ÔòÍÖÔ²C·½³ÌÊÇ$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1£»
£¨II£©Éè½»µãΪE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬EFµÄÖеãMµÄ×ø±êΪ£¨xM£¬yM£©£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}+4{y}^{2}=16}\end{array}\right.$£¬µÃ£¨1+4k2£©x2+8kx-12=0£¬
ÓÉÌâ¿ÉÖª¡÷=64k2-4£¨1+4k2£©£¨-12£©£¾0ºã³ÉÁ¢£¬
x1+x2=-$\frac{8k}{1+4{k}^{2}}$£¬x1x2=-$\frac{12}{1+4{k}^{2}}$£¬
¿ÉµÃxM=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{4k}{1+4{k}^{2}}$£¬yM=$\frac{{y}_{1}+{y}_{2}}{2}$=1+$\frac{k£¨{x}_{1}+{x}_{2}£©}{2}$=$\frac{1}{1+4{k}^{2}}$£¬
ÒòΪ¡÷BEFÊÇÒÔEFΪµ×±ß£¬BΪ¶¥µãµÄµÈÑü½ÇÐΣ¬ËùÒÔEF¡ÍBM£®
Òò´ËBMµÄбÂÊkBM=-$\frac{1}{k}$£¬ÓÖµãBµÄ×ø±êΪ£¨0£¬-2£©£¬
ËùÒÔkBM=$\frac{{y}_{M}+2}{{x}_{M}-0}$=-$\frac{3+8{k}^{2}}{4k}$£¬¼´-$\frac{3+8{k}^{2}}{4k}$=-$\frac{1}{k}$£¬
½âµÃk=¡À$\frac{\sqrt{2}}{4}$£¬¹ÊEFµÄÖ±Ïß·½³ÌΪ¡À$\sqrt{2}$x-4y+4=0£¬
ÓÖÒòΪԲx2+y2=$\frac{1}{2}$µÄÔ²ÐÄ£¨0£¬0£©µ½Ö±ÏßEFµÄ¾àÀëd=$\frac{4}{\sqrt{18}}$=$\frac{2\sqrt{2}}{3}$£¾$\frac{\sqrt{2}}{2}$£¬
ËùÒÔÖ±ÏßEFÓëÔ²x2+y2=$\frac{1}{2}$ÏàÀ룮
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄ½¹¾àºÍµãÂú×ãÍÖÔ²·½³Ì£¬¿¼²éÖ±ÏߺÍÔ²µÄλÖùØÏµµÄÅжϣ¬×¢ÒâÔËÓÃÔ²Ðĵ½Ö±ÏߵľàÀëºÍ°ë¾¶µÄ¹ØÏµ£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\overrightarrow{AB}$¡Î$\overrightarrow{CD}$¾ÍÊÇ$\overrightarrow{AB}$ËùÔÚµÄÖ±Ï߯½ÐÐÓÚ$\overrightarrow{CD}$ËùÔÚµÄÖ±Ïß | |
| B£® | ³¤¶ÈÏàµÈµÄÏòÁ¿½ÐÏàµÈÏòÁ¿ | |
| C£® | ÁãÏòÁ¿µÄ³¤¶ÈµÈÓÚ0 | |
| D£® | ¹²ÏßÏòÁ¿ÊÇÔÚͬһÌõÖ±ÏßÉϵÄÏòÁ¿ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | y¡ä=x | B£® | y¡ä=e•x | C£® | y¡ä=ex | D£® | y¡ä=x•ex-1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | $\sqrt{2}$ | C£® | $\sqrt{3}$ | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com