2£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ½¹¾àΪ4$\sqrt{3}$£¬ÇÒÍÖÔ²C¹ýµã£¨2$\sqrt{3}$£¬1£©£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÍÖÔ²CÓëyÖḺ°ëÖáµÄ½»µãΪB£¬Èç¹ûÖ±Ïßy=kx+1£¨k¡Ù0£©½»ÍÖÔ²CÓÚ²»Í¬µÄÁ½µãE¡¢F£¬ÇÒB£¬E£¬F¹¹³ÉÒÔEFΪµ×±ß£¬BΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ¬ÅжÏÖ±ÏßEFÓëÔ²x2+y2=$\frac{1}{2}$µÄλÖùØÏµ£®

·ÖÎö £¨I£©ÓÉÌâ¿ÉÖªc=2$\sqrt{3}$£¬ÓÖa2-b2=c2£¬½«µã£¨2$\sqrt{3}$£¬1£©´úÈëÍÖÔ²·½³Ì£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨II£©Éè½»µãΪE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬EFµÄÖеãMµÄ×ø±êΪ£¨xM£¬yM£©£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬¿ÉµÃMµÄ×ø±ê£¬ÓÉÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£ºÐ±ÂÊÖ®»ýΪ-1£¬¿ÉµÃÖ±ÏßEFµÄ·½³Ì£¬ÔÙÇóÔ²Ðĵ½Ö±ÏߵľàÀ룬Óë°à¼¶±È½Ï£¬¼´¿ÉµÃµ½ËùÇóλÖùØÏµ£®

½â´ð ½â£º£¨I£©ÓÉÌâ¿ÉÖªc=2$\sqrt{3}$£¬a2-b2=c2£¬
½«µã£¨2$\sqrt{3}$£¬1£©´úÈëÍÖÔ²·½³Ì¿ÉµÃ$\frac{12}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1£¬½âµÃa=4£¬b=2£¬
ÔòÍÖÔ²C·½³ÌÊÇ$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1£»                  
£¨II£©Éè½»µãΪE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬EFµÄÖеãMµÄ×ø±êΪ£¨xM£¬yM£©£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}+4{y}^{2}=16}\end{array}\right.$£¬µÃ£¨1+4k2£©x2+8kx-12=0£¬
ÓÉÌâ¿ÉÖª¡÷=64k2-4£¨1+4k2£©£¨-12£©£¾0ºã³ÉÁ¢£¬
x1+x2=-$\frac{8k}{1+4{k}^{2}}$£¬x1x2=-$\frac{12}{1+4{k}^{2}}$£¬
¿ÉµÃxM=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{4k}{1+4{k}^{2}}$£¬yM=$\frac{{y}_{1}+{y}_{2}}{2}$=1+$\frac{k£¨{x}_{1}+{x}_{2}£©}{2}$=$\frac{1}{1+4{k}^{2}}$£¬
ÒòΪ¡÷BEFÊÇÒÔEFΪµ×±ß£¬BΪ¶¥µãµÄµÈÑü½ÇÐΣ¬ËùÒÔEF¡ÍBM£®
Òò´ËBMµÄбÂÊkBM=-$\frac{1}{k}$£¬ÓÖµãBµÄ×ø±êΪ£¨0£¬-2£©£¬
ËùÒÔkBM=$\frac{{y}_{M}+2}{{x}_{M}-0}$=-$\frac{3+8{k}^{2}}{4k}$£¬¼´-$\frac{3+8{k}^{2}}{4k}$=-$\frac{1}{k}$£¬
½âµÃk=¡À$\frac{\sqrt{2}}{4}$£¬¹ÊEFµÄÖ±Ïß·½³ÌΪ¡À$\sqrt{2}$x-4y+4=0£¬
ÓÖÒòΪԲx2+y2=$\frac{1}{2}$µÄÔ²ÐÄ£¨0£¬0£©µ½Ö±ÏßEFµÄ¾àÀëd=$\frac{4}{\sqrt{18}}$=$\frac{2\sqrt{2}}{3}$£¾$\frac{\sqrt{2}}{2}$£¬
ËùÒÔÖ±ÏßEFÓëÔ²x2+y2=$\frac{1}{2}$ÏàÀ룮

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄ½¹¾àºÍµãÂú×ãÍÖÔ²·½³Ì£¬¿¼²éÖ±ÏߺÍÔ²µÄλÖùØÏµµÄÅжϣ¬×¢ÒâÔËÓÃÔ²Ðĵ½Ö±ÏߵľàÀëºÍ°ë¾¶µÄ¹ØÏµ£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªf£¨x£©=$\frac{cos£¨¦Ð+¦Á£©cos£¨\frac{¦Ð}{2}+¦Á£©}{sin£¨¦Ð-¦Á£©}$£®
£¨1£©»¯¼òf£¨¦Á£©£»
£¨2£©Èô¦ÁΪµÚÈýÏóÏÞ½ÇÇÒtan£¨¦Ð+¦Á£©=$\frac{1}{2}$£¬Çóf£¨¦Á£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\overrightarrow{AB}$¡Î$\overrightarrow{CD}$¾ÍÊÇ$\overrightarrow{AB}$ËùÔÚµÄÖ±Ï߯½ÐÐÓÚ$\overrightarrow{CD}$ËùÔÚµÄÖ±Ïß
B£®³¤¶ÈÏàµÈµÄÏòÁ¿½ÐÏàµÈÏòÁ¿
C£®ÁãÏòÁ¿µÄ³¤¶ÈµÈÓÚ0
D£®¹²ÏßÏòÁ¿ÊÇÔÚͬһÌõÖ±ÏßÉϵÄÏòÁ¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®½â²»µÈʽ£º1-5x£¼6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®¶ÔÓÚº¯Êýf£¨x£©£¬Èô´æÔÚÇø¼äA=[m£¬n]£¬Ê¹µÃ{y|y=f£¨x£©£¬x¡ÊA}=A£¬Ôò³Æº¯Êýf£¨x£©Îª¡°Í¬Óòº¯Êý¡±£¬Çø¼äAΪº¯Êýf£¨x£©µÄÒ»¸ö¡°Í¬ÓòÇø¼ä¡±£®¸ø³öÏÂÁÐËĸöº¯Êý£º
¢Ùf£¨x£©=cos$\frac{¦Ð}{2}$x£»
¢Úf£¨x£©=x2-1£»
¢Ûf£¨x£©=|2x-1|£»
¢Üf£¨x£©=log2£¨x-1£©£®
´æÔÚ¡°Í¬ÓòÇø¼ä¡±µÄ¡°Í¬Óòº¯Êý¡±µÄÐòºÅÊÇ¢Ú¢Û£¨Çëд³öËùÓÐÕýÈ·½áÂÛµÄÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªÍÖÔ²E£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÓÒ½¹µãΪF£¬Ö±Ïßl£º3x-4y=0½»ÍÖÔ²EÓÚA£¬BÁ½µã£¬Èô|AF|+|BF|=14£¬µãF¹ØÓÚl¶Ô³ÆµãMÔÚÍÖÔ²EÉÏ£¬ÔòF×ø±êΪ£¨5£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ$\frac{¦Ð}{4}$£¬Èô|$\overrightarrow{a}$|=$\sqrt{2}$£¬ÇÒ$\overrightarrow{a}$•$\overrightarrow{b}$=4£¬Ôò|$\overrightarrow{b}$|=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®º¯Êýy=exµÄµ¼º¯ÊýÊÇ£¨¡¡¡¡£©
A£®y¡ä=xB£®y¡ä=e•xC£®y¡ä=exD£®y¡ä=x•ex-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®$\frac{sin40¡ã+cos40¡ã}{\sqrt{1+cos10¡ã}}$=£¨¡¡¡¡£©
A£®1B£®$\sqrt{2}$C£®$\sqrt{3}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸