精英家教网 > 高中数学 > 题目详情
8.求值:sin390°•cos$\frac{π}{6}$+$\frac{cosπ}{sin90°}$-tan135°.

分析 根据特殊角的三角函数值和诱导公式直接计算即可.

解答 解:sin390°•cos$\frac{π}{6}$+$\frac{cosπ}{sin90°}$-tan135°=$\frac{1}{2}$×$\frac{\sqrt{3}}{2}$-1+1=$\frac{\sqrt{3}}{4}$.

点评 本题考查了特殊角的三角函数值和诱导公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.求证:
4n-10≥(3+n)•3n-1(n∈N,n≥3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简求值:
(1)sin14°cos16°+sin76°•cos74°;
(2)sin(54°-x)cos(36°+x)+cos(54°-x)sin(36°+x);
(3)sin$\frac{π}{12}$-$\sqrt{3}$cos$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)=sin(x+$\frac{π}{6}$),若sinα=$\frac{3}{5}$($\frac{π}{2}$<α<π),则f(α+$\frac{π}{12}$)=(  )
A.$\frac{7\sqrt{2}}{10}$B.-$\frac{\sqrt{2}}{10}$C.$\frac{\sqrt{2}}{10}$D.$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={(x,y)|x,y,1-x-y是三角形的三边长},若z=kx+2y的取值范围为(1,$\frac{5}{2}$),则k的值为(  )
A.-3B.-2C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在3到42之间插入12个数,使得这14个数组成一个等差数列,求这个等差数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}中,a1=-60,an+1=an+4.
(1)求通项an
(2)求Sn=|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$(α为参数),M是曲线C1上的动点,点P满足$\overrightarrow{OP}=2\overrightarrow{OM}$,
(1)求点P的轨迹方程C2
(2)在以O为极点,X轴的正半轴为极轴的极坐标系中,射线$θ=\frac{π}{3}$与曲线C1,C2交于不同于原点的点A,B求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知某物体的位移S(米)与时间t(秒)的关系是S(t)=3t-t2
(Ⅰ)求t=0秒到t=2秒的平均速度;
(Ⅱ)求此物体在t=2秒的瞬时速度.

查看答案和解析>>

同步练习册答案