精英家教网 > 高中数学 > 题目详情
3.设由不等式组$\left\{\begin{array}{l}x-2y≥0\\ x+3y≥0\end{array}\right.$所确定的平面区域为Ω,若动点P(x,y)在圆x2+y2=1上运动,则动点P落在区域Ω内的概率为$\frac{1}{8}$,若动点P(x,y)在平面区域Ω内,且满足0≤x≤2,则函数f(x,y)=x-y的最大值为$\frac{8}{3}$.

分析 作出平面区域,计算区域边界的夹角,计算概率;移动目标函数得到最优解.

解答 解:作出平面区域如图所示:由直线的斜率可知tan∠AOX=$\frac{1}{2}$,tan∠BOX=$\frac{1}{3}$.
∴tan∠AOB=$\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}×\frac{1}{3}}$=1.∴∠AOB=$\frac{π}{4}$.
∴当P在圆x2+y2=1上运动时,P点落在区域Ω内的概率为$\frac{\frac{π}{4}}{2π}$=$\frac{1}{8}$.
令z=x-y,则y=x-z,∴当z最大时,直线y=x-z在y轴上的截距最小.
由图可知当直线过点B时,截距最小,即z最大.
解方程组$\left\{\begin{array}{l}{x=2}\\{x+3y=0}\end{array}\right.$得x=2,y=-$\frac{2}{3}$.∴z的最大值为2-(-$\frac{2}{3}$)=$\frac{8}{3}$.
故答案为$\frac{1}{8}$,$\frac{8}{3}$.

点评 本题考查了简单的线性规划,几何概型的概率计算,作出平面区域是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知数列{an}是等差数列.且a1=2.a1+a2+a3=12.
(1)求数列{an}的通项公式.
(2)令bn=xan(x>0),求数列{bn}的前n项和(用x表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求$\frac{(tan70°-tan10°+tan120°)}{(tan70tan10°)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在所有的两位正整数中,既能被2整除,又能被3整除的数共有16个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若直线l过点(1,2),在y轴上的截距为1,则l的方程为(  )
A.3x-y-1=0B.3x-y+1=0C.x-y-1=0D.x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线${C_1}:\left\{\begin{array}{l}x=2cost\\ y=sint\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为$ρ=\frac{7}{cosθ-2sinθ}$.
(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程;
(2)设P为曲线C1上的点,求P到曲线C2的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l:ρcosθ-ρsinθ-1=0和曲线C:$\left\{\begin{array}{l}{x=1+2sinφ}\\{y=-1+2cosφ}\end{array}\right.$(φ为参数)
(1)将l与C的方程化为普通方程;
(2)判定直线l与曲线 C是否相交,若相交求出l被C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C的参数方程为:$\left\{{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数),直线l的参数方程为:$\left\{{\begin{array}{l}{x=2+\sqrt{3}t}\\{y=1+t}\end{array}}\right.$(t为参数),点P(2,1),直线l与曲线C交于A,B两点.
(1)写出曲线C和直线l在直角坐标系下的标准方程;
(2)求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆W:$\frac{x^2}{4}+{y^2}=1$,过原点O作直线l1交椭圆W于A,B两点,P为椭圆上异于A,B的动点,连接PA,PB,设直线PA,PB的斜率分别为k1,k2(k1,k2≠0),过O作直线PA,PB的平行线l2,l3,分别交椭圆W于C,D和E,F.
(Ⅰ)若A,B分别为椭圆W的左、右顶点,是否存在点P,使∠APB=90°?说明理由.
(Ⅱ)求k1•k2的值;
(Ⅲ)求|CD|2+|EF|2的值.

查看答案和解析>>

同步练习册答案