分析 求出y′=ex,由定义求出两点A(x1,y1),B(x2,y2)之间的“弯曲度”,代入t•φ(A,B)<1化简,根据恒成立求出实数t的取值范围.
解答 解:由y=ex得y′(x)=ex,
∵A(x1,y1),B(x2,y2)为曲线y=ex上两点,且x1-x2=1,
∴φ(A,B)=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$=$\frac{{|e}^{{x}_{1}}-{e}^{{x}_{2}}|}{\sqrt{1+({e}^{{x}_{1}}-{e}^{{x}_{2}})^{2}}}$,
∵t•φ(A,B)<1恒成立,∴t<$\sqrt{\frac{1}{({e}^{{x}_{1}}-{e}^{{x}_{2}})^{2}}+1}$,
∵$\sqrt{\frac{1}{({e}^{{x}_{1}}-{e}^{{x}_{2}})^{2}}+1}$>1,∴t≤1,
则实数t的取值范围是(-∞,1].
点评 本题考查新定义的函数的性质与应用问题,导数的几何意义,两点间的距离公式,以及恒成立问题,解题时应根据函数的新定义的内容进行分析、判断,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | ±1 | D. | -1≤k≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≥1 | B. | a>0 | C. | 0<a<1 | D. | 0≤a≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com