精英家教网 > 高中数学 > 题目详情
(Ⅰ)已知a≥b>0,求证:2a3-b3≥2ab2-a2b.
(Ⅱ)设a,b,c,x,y,z是正数,且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,求
a+b+c
x+y+z
的值.
考点:不等式的证明,二维形式的柯西不等式
专题:综合题,不等式的解法及应用
分析:(Ⅰ)利用作差法,即可证明结论;
(Ⅱ)利用(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2,(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2等号成立,即可求出
a+b+c
x+y+z
的值.
解答: (Ⅰ)证明:2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)…(1分)
=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b)…(2分)
∵a≥b>0,∴a-b≥0,a+b>0,2a+b>0,
从而(a-b)(a+b)(2a+b)≥0,
即2a3-b3≥2ab2-a2b.…(5分)
(Ⅱ)因为a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20
所以(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2…(6分)
又(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2等号成立
当且仅当
a
x
=
b
y
=
c
z
=t
…(7分)
则a=tx,b=ty,c=tz代入a2+b2+c2=10
得t2(x2+y2+z2)=10于是t=
1
2
…(8分)
a
x
=
b
y
=
c
z
=
a+b+c
x+y+z

所以
a+b+c
x+y+z
=t=
1
2
…(10分)
点评:本题考查不等式的证明,考查学生分析解决问题的能力,难度中等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=cos(2x+
π
6
)+sin2x,(x∈R)
(1)求函数f(x)的最小正周期;
(2)当x∈[0,
π
2
]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=loga|x|(a>0,且a≠1)
(1)求f(x)的定义域;
(2)证明f(x)为偶函数;
(3)求使f(x)>0成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

调查某市出租车使用年限x和该年支出维修费用y(万元),得到数据如下:
使用年限x23456
维修费用y2.23.85.56.57.0
(1)画出数据对应的散点图;
(2)求线性回归方程;
(3)由(2)中结论预测第10年所支出的维修费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x|x-a|+2x,若存在a∈[-3,3],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,则实数t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某大学共有学生5600人,其中专科生1300人,本科生3000人,研究生1300人,现采用分层抽样的方法,抽取容量为280的样本,则抽取的本科生人数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

10个正数的平方和是370,方差是33,那么平均数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设A=37+C
 
2
7
35+C
 
4
7
33+C
 
6
7
3,B=C
 
1
7
36+C
 
3
7
34+C
 
5
7
32+1,则A-B的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意定义在R上的函数f(x),若实数x0满足f(x0)=x0,则称x0是函数f(x)的一个不动点.若二次函数f(x)=x2-ax+1没有不动点,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案