精英家教网 > 高中数学 > 题目详情
8.椭圆满足这样的光学性质:从椭圆的一个交点发射的光线,经椭圆反射后,反射光先经过椭圆的另一个交点,现设有一个水平放置的椭圆形台球盘,满足方程$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,点A和B是它们的两个交点,当静止的小球放在点A处,从点A沿直线出发,经椭圆壁反弹后,再回到点A时,小球经过的路程是2或18或20.

分析 根据椭圆的光学性质可知,当静止的小球放在点A处,从点A沿直线出发,射到左顶点,经椭圆壁反弹后,再回到点A时,小球经过的路程是2;射到右顶点,经椭圆壁反弹后,再回到点A时,小球经过的路程是18;小球从点A沿直线出发,经椭圆壁反弹到B点继续前行碰椭圆壁后回到A点,所走的轨迹正好是两次椭圆上的点到两焦点距离之和,进而根据椭圆的定义可求得答案.

解答 解:依题意可知$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1中,a=5,b=3,c=4,设A,B分别为左、右焦点,
则当静止的小球放在点A处,从点A沿直线出发,射到左顶点,经椭圆壁反弹后,再回到点A时,小球经过的路程是2;
射到右顶点,经椭圆壁反弹后,再回到点A时,小球经过的路程是18;
小球经两次椭圆壁后反弹后回到A点,根据椭圆的性质可知所走的路程正好是4a=4×5=20.
故答案为:2或18或20.

点评 本题主要考查了椭圆的应用.解题的关键是利用了椭圆的第一定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知集合A={-2,a},B={2a,b},若A∩B={1},则A∪B=(  )
A.{-2,1,3}B.{-2,1,2}C.{-2,1}D.{-2,1,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c.已知$\overrightarrow{BA}•\overrightarrow{BC}$=2,tanB=2$\sqrt{2}$,b=3.
(Ⅰ)求a,c的值;
(Ⅱ)求cos(B-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.各项均为正数的等差数列{an}中,a4a9=36,则前12项和S12的最小值为(  )
A.78B.48C.60D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=log2(x+2)-$\frac{3}{x}$(x>0)的零点所在的大致区间是(  )
A.(0,1)B.(1,2)C.(2,e)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列 {an}{bn}满足 a1=b1=1,an+1-an=$\frac{{b}_{n+1}}{{b}_{n}}$=2,n∈N*,则数列 {b${\;}_{{a}_{n}}$}的前10项和为(  )
A.$\frac{1}{3}$(410-1)B.$\frac{4}{3}$(410-1)C.$\frac{1}{3}$(49-1)D.$\frac{4}{3}$(49-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx+ax2+bx(x>0,a∈R,b∈R),e=2.718…,为自然对数的底数.
(Ⅰ)若曲线y=f(x)在(1,f(1))处的切线方程为x-2y-2=0,求函数f(x)的解析式;
(Ⅱ)当b=1时,若f(x)的极大值大于零?求出a的取值范围;
(Ⅲ)证明命题“已知h(x)在其定义域D上是单调递增函数,若?x0∈D,满足h(h(x0))=x0,则h(x0)=x0”是真命题,并探索:当a>0,b=1时,函数y=f(f(x))-x是否存在大于1的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.椐统计,某食品企业一个月内被消费者投诉的次数为0,1,2的概率分别为0.3,0.5,0.2.
(Ⅰ)求该企业在一个月内共被消费者投诉不超过1次的概率;
(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.i+i2+i3+…+i2015=-1.

查看答案和解析>>

同步练习册答案