精英家教网 > 高中数学 > 题目详情
13.已知数列 {an}{bn}满足 a1=b1=1,an+1-an=$\frac{{b}_{n+1}}{{b}_{n}}$=2,n∈N*,则数列 {b${\;}_{{a}_{n}}$}的前10项和为(  )
A.$\frac{1}{3}$(410-1)B.$\frac{4}{3}$(410-1)C.$\frac{1}{3}$(49-1)D.$\frac{4}{3}$(49-1)

分析 根据等差数列与等比数列的定义结合题中的条件得到数列{an}与{bn}的通项公式,进而表达出{ban}的通项公式并且可以证明此数列为等比数列,再利用等比数列前n项和的公式计算出答案即可.

解答 解:由an+1-an=$\frac{{b}_{n+1}}{{b}_{n}}$=2,
所以数列{an}是等差数列,且公差是2,{bn}是等比数列,且公比是2.
又因为a1=1,所以an=a1+(n-1)d=2n-1.
所以b${\;}_{{a}_{n}}$=b2n-1=b1•22n-2=22n-2
设cn=b${\;}_{{a}_{n}}$,所以cn=22n-2
所以$\frac{{c}_{n}}{{c}_{n-1}}$=4,所以数列{cn}是等比数列,且公比为4,首项为1.
由等比数列的前n项和的公式得:
其前10项的和为$\frac{1-{4}^{10}}{1-4}$=$\frac{1}{3}$(410-1).
故选A.

点评 解决此类问题的关键是熟练掌握等比数列与等差数列的定义,以及它们的通项公式与前n项和的表示式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.从平行六面体的8个顶点中任取5个顶点为顶点,恰好构成四棱锥的概率为(  )
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{3}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知cosα=$\frac{4}{5}$,α∈(-$\frac{π}{2}$,0),则tan($\frac{π}{4}$+$\frac{α}{2}$)的值是(  )
A.2B.$\frac{2}{5}$C.-2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列{an}满足2an=an-1+an+1(n≥2),且a1+a3+a5=9,a3+a5+a7=15则a3+a4+a5=(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.椭圆满足这样的光学性质:从椭圆的一个交点发射的光线,经椭圆反射后,反射光先经过椭圆的另一个交点,现设有一个水平放置的椭圆形台球盘,满足方程$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,点A和B是它们的两个交点,当静止的小球放在点A处,从点A沿直线出发,经椭圆壁反弹后,再回到点A时,小球经过的路程是2或18或20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的最小正周期是π,其图象的一条对称轴是直线x=$\frac{π}{8}$,又锐角三角形ABC中,满足f(C)=-$\frac{{\sqrt{2}}}{2}$
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若tanA-$\frac{1}{sin2A}$=tanB,求角A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个算法的程序框图如图所示,若运行该程序后输出的结果为$\frac{4}{5}$,则判断框中应填入的条件是(  )
A.i≤5?B.i≤4?C.i≥4?D.i≥5?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数y=f(x)是函数y=($\frac{1}{2}$)x的反函数,则f(4)=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算$\lim_{n→∞}\frac{2n+1}{n+2}$=2.

查看答案和解析>>

同步练习册答案